000906825 001__ 906825
000906825 005__ 20250129094340.0
000906825 0247_ $$2Handle$$a2128/30854
000906825 037__ $$aFZJ-2022-01719
000906825 1001_ $$0P:(DE-Juel1)151305$$aSun, Xiao$$b0
000906825 1112_ $$a30th annual meeting of the German Crystallographic Society (DGK)$$cLudwig Maximilians Universität München + online$$d2022-03-14 - 2022-03-17$$wGermany + online
000906825 245__ $$aTuning the structural and magnetic properties of iron oxide nanoparticles
000906825 260__ $$c2022
000906825 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1648124141_11907
000906825 3367_ $$033$$2EndNote$$aConference Paper
000906825 3367_ $$2BibTeX$$aINPROCEEDINGS
000906825 3367_ $$2DRIVER$$aconferenceObject
000906825 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000906825 3367_ $$2ORCID$$aOTHER
000906825 520__ $$aDue to their biocompatibility and magnetic properties, iron oxide nanoparticles (NPs) areespecially interesting for applications such as targeted drug delivery and hyperthermia therapy[1–3]. According to its oxidation states, iron may form various crystal structures and thus showdifferent magnetic properties. Divalent FeO is a bulk antiferromagnet with a rock salt crystalstructure at room temperature. When Fe2+ is oxidized towards the trivalent state, as found e.g. inFe3O4 and Fe2O3, one encounters a spinel structure and ferrimagnetic (FiM) behavior. The FiM toparamagnetic phase transition for bulk magnetite and maghemite occurs at TC = 858K and 948K,respectively. However, they may show different magnetic properties in nanoscale due to thefinite size effect. Synthesis of single-phase oxide NPs is challenging. An oxidized layer is oftenfound at the surface of the NPs. This leads to an exchange bias effect.We observe a shift in the hysteresis loops of various sizes of iron oxide NPs (5-20nm). This isdue to an exchange interaction between the magnetite core and a shell with disordered surfacespins. By comparing hysteresis loops cooled at different magnetic fields, a hardening effect isobserved, i.e. the squareness and hardness of hysteresis loops is significantly enhanced withincreasing magnetic cooling field. This indicates that an anisotropy axis is induced due to theexchange bias effect.In order to understand the origin of the exchange bias effect, we studied their crystallographicstructure using X-ray powder diffraction, total scattering experiments with pair distributionfunction analysis. The ratio of different phases of iron oxide (wustite, magnetite and maghemite)was obtained using X-ray absorptions spectroscopy. The morphology of the particles wascharacterized using scanning electron microscopy and small angle scattering. The relationshipbetween the composition of the NPs and the exchange bias effect is studied. Furthermore, themagnetic properties of the samples can be tuned by oxidation or reduction via differentannealing procedures. These results provide important information for the manipulation of theexchange bias in oxide NPs.
000906825 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000906825 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000906825 7001_ $$0P:(DE-HGF)0$$aTayal, A.$$b1
000906825 7001_ $$0P:(DE-HGF)0$$aDippel, A.-C.$$b2
000906825 7001_ $$0P:(DE-Juel1)145895$$aPetracic, O.$$b3$$ufzj
000906825 8564_ $$uhttps://juser.fz-juelich.de/record/906825/files/abstract%20book_DGK_194..pdf$$yOpenAccess
000906825 909CO $$ooai:juser.fz-juelich.de:906825$$pdriver$$pVDB$$popen_access$$popenaire
000906825 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145895$$aForschungszentrum Jülich$$b3$$kFZJ
000906825 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000906825 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000906825 9141_ $$y2022
000906825 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906825 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000906825 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000906825 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000906825 9801_ $$aFullTexts
000906825 980__ $$aabstract
000906825 980__ $$aVDB
000906825 980__ $$aUNRESTRICTED
000906825 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000906825 980__ $$aI:(DE-Juel1)PGI-4-20110106
000906825 980__ $$aI:(DE-82)080009_20140620
000906825 981__ $$aI:(DE-Juel1)JCNS-2-20110106