000906831 001__ 906831
000906831 005__ 20240712084615.0
000906831 0247_ $$2doi$$a10.3390/en15062160
000906831 0247_ $$2Handle$$a2128/32482
000906831 0247_ $$2WOS$$aWOS:000775610500001
000906831 037__ $$aFZJ-2022-01725
000906831 082__ $$a620
000906831 1001_ $$0P:(DE-Juel1)169154$$aPoonoosamy, Jenna$$b0$$eCorresponding author
000906831 245__ $$aA Lab on a Chip Experiment for Upscaling Diffusivity of Evolving Porous Media
000906831 260__ $$aBasel$$bMDPI$$c2022
000906831 3367_ $$2DRIVER$$aarticle
000906831 3367_ $$2DataCite$$aOutput Types/Journal article
000906831 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1668090927_28770
000906831 3367_ $$2BibTeX$$aARTICLE
000906831 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906831 3367_ $$00$$2EndNote$$aJournal Article
000906831 520__ $$aReactive transport modelling is a powerful tool to assess subsurface evolution in various energy-related applications. Upscaling, i.e., accounting for pore scale heterogeneities into larger scale analyses, remains one of the biggest challenges of reactive transport modelling. Pore scale simulations capturing the evolutions of the porous media over a wide range of Peclet and Damköhler number in combination with machine learning are foreseen as an efficient methodology for upscaling. However, the accuracy of these pore scale models needs to be tested against experiments. In this work, we developed a lab on a chip experiment with a novel micromodel design combined with operando confocal Raman spectroscopy, to monitor the evolution of porous media undergoing coupled mineral dissolution and precipitation processes due to diffusive reactive fluxes. The 3D-imaging of the porous media combined with pore scale modelling enabled the derivation of upscaled transport parameters. The chemical reaction tested involved the replacement of celestine by strontianite, whereby a net porosity increase is expected because of the smaller molar volume of strontianite. However, under our experimental conditions, the accessible porosity and consequently diffusivity decreased. We propose a transferability of the concepts behind the Verma and Pruess relationship to be applied to also describe changes of diffusivity for evolving porous media. Our results highlight the importance of calibrating pore scale models with quantitative experiments prior to simulations over a wide range of Peclet and Damköhler numbers of which results can be further used for the derivation of upscaled parameters.
000906831 536__ $$0G:(DE-HGF)POF4-1411$$a1411 - Nuclear Waste Disposal (POF4-141)$$cPOF4-141$$fPOF IV$$x0
000906831 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906831 7001_ $$00000-0002-5762-3036$$aLu, Renchao$$b1
000906831 7001_ $$0P:(DE-Juel1)187273$$aLönartz, Mara Iris$$b2
000906831 7001_ $$0P:(DE-Juel1)156511$$aDeissmann, Guido$$b3
000906831 7001_ $$0P:(DE-Juel1)130324$$aBosbach, Dirk$$b4$$ufzj
000906831 7001_ $$0P:(DE-Juel1)179556$$aYang, Yuankai$$b5
000906831 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en15062160$$gVol. 15, no. 6, p. 2160 -$$n6$$p2160 -$$tEnergies$$v15$$x1996-1073$$y2022
000906831 8564_ $$uhttps://juser.fz-juelich.de/record/906831/files/energies-15-02160.pdf$$yOpenAccess
000906831 909CO $$ooai:juser.fz-juelich.de:906831$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169154$$aForschungszentrum Jülich$$b0$$kFZJ
000906831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187273$$aForschungszentrum Jülich$$b2$$kFZJ
000906831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156511$$aForschungszentrum Jülich$$b3$$kFZJ
000906831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130324$$aForschungszentrum Jülich$$b4$$kFZJ
000906831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179556$$aForschungszentrum Jülich$$b5$$kFZJ
000906831 9131_ $$0G:(DE-HGF)POF4-141$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1411$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vNukleare Entsorgung$$x0
000906831 9141_ $$y2022
000906831 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000906831 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906831 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000906831 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000906831 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906831 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000906831 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2021$$d2022-11-12
000906831 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000906831 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000906831 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-19T09:53:42Z
000906831 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-19T09:53:42Z
000906831 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-19T09:53:42Z
000906831 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000906831 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000906831 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000906831 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000906831 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000906831 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000906831 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung$$x0
000906831 9801_ $$aFullTexts
000906831 980__ $$ajournal
000906831 980__ $$aVDB
000906831 980__ $$aUNRESTRICTED
000906831 980__ $$aI:(DE-Juel1)IEK-6-20101013
000906831 981__ $$aI:(DE-Juel1)IFN-2-20101013