001     906831
005     20240712084615.0
024 7 _ |a 10.3390/en15062160
|2 doi
024 7 _ |a 2128/32482
|2 Handle
024 7 _ |a WOS:000775610500001
|2 WOS
037 _ _ |a FZJ-2022-01725
082 _ _ |a 620
100 1 _ |a Poonoosamy, Jenna
|0 P:(DE-Juel1)169154
|b 0
|e Corresponding author
245 _ _ |a A Lab on a Chip Experiment for Upscaling Diffusivity of Evolving Porous Media
260 _ _ |a Basel
|c 2022
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668090927_28770
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Reactive transport modelling is a powerful tool to assess subsurface evolution in various energy-related applications. Upscaling, i.e., accounting for pore scale heterogeneities into larger scale analyses, remains one of the biggest challenges of reactive transport modelling. Pore scale simulations capturing the evolutions of the porous media over a wide range of Peclet and Damköhler number in combination with machine learning are foreseen as an efficient methodology for upscaling. However, the accuracy of these pore scale models needs to be tested against experiments. In this work, we developed a lab on a chip experiment with a novel micromodel design combined with operando confocal Raman spectroscopy, to monitor the evolution of porous media undergoing coupled mineral dissolution and precipitation processes due to diffusive reactive fluxes. The 3D-imaging of the porous media combined with pore scale modelling enabled the derivation of upscaled transport parameters. The chemical reaction tested involved the replacement of celestine by strontianite, whereby a net porosity increase is expected because of the smaller molar volume of strontianite. However, under our experimental conditions, the accessible porosity and consequently diffusivity decreased. We propose a transferability of the concepts behind the Verma and Pruess relationship to be applied to also describe changes of diffusivity for evolving porous media. Our results highlight the importance of calibrating pore scale models with quantitative experiments prior to simulations over a wide range of Peclet and Damköhler numbers of which results can be further used for the derivation of upscaled parameters.
536 _ _ |a 1411 - Nuclear Waste Disposal (POF4-141)
|0 G:(DE-HGF)POF4-1411
|c POF4-141
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lu, Renchao
|0 0000-0002-5762-3036
|b 1
700 1 _ |a Lönartz, Mara Iris
|0 P:(DE-Juel1)187273
|b 2
700 1 _ |a Deissmann, Guido
|0 P:(DE-Juel1)156511
|b 3
700 1 _ |a Bosbach, Dirk
|0 P:(DE-Juel1)130324
|b 4
|u fzj
700 1 _ |a Yang, Yuankai
|0 P:(DE-Juel1)179556
|b 5
773 _ _ |a 10.3390/en15062160
|g Vol. 15, no. 6, p. 2160 -
|0 PERI:(DE-600)2437446-5
|n 6
|p 2160 -
|t Energies
|v 15
|y 2022
|x 1996-1073
856 4 _ |u https://juser.fz-juelich.de/record/906831/files/energies-15-02160.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906831
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169154
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187273
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156511
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130324
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)179556
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)
|1 G:(DE-HGF)POF4-140
|0 G:(DE-HGF)POF4-141
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Nukleare Entsorgung
|9 G:(DE-HGF)POF4-1411
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGIES : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-19T09:53:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-19T09:53:42Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-19T09:53:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21