001     906840
005     20230123110608.0
024 7 _ |a 10.3390/catal12040354
|2 doi
024 7 _ |a 2128/32779
|2 Handle
024 7 _ |a WOS:000786882300001
|2 WOS
037 _ _ |a FZJ-2022-01734
082 _ _ |a 540
100 1 _ |a Seide, Selina
|0 P:(DE-Juel1)173700
|b 0
245 _ _ |a From Enzyme to Preparative Cascade Reactions with Immobilized Enzymes: Tuning Fe(II)/α-Ketoglutarate-Dependent Lysine Hydroxylases for Application in Biotransformations
260 _ _ |a Basel
|c 2022
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669283958_12375
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fe(II)/α-ketoglutarate-dependent dioxygenases (KDOs) catalyze a broad range of selective C–H oxidation reactions. However, the difficult production of KDOs in recombinant E. coli strains and their instability in purified form have so far limited their application in preparative biotransformations. Here, we investigated the immobilization of three KDOs (CaKDO, CpKDO, FjKDO) that catalyze the stereoselective hydroxylation of the L-lysine side chain using two one-step immobilization techniques (HaloTag®, EziG™). The HaloTag®-based immobilisates reached the best results with respect to residual activity and stability. In preparative lab-scale experiments, we achieved product titers of 16 g L−1 (3S)-hydroxy-L-lysine (CaKDO) and (4R)-hydroxy-L-lysine (FjKDO), respectively, starting from 100 mM L-lysine. Using a HaloTag®-immobilized lysine decarboxylase from Selenomonas ruminantium (SrLDC), the (3S)-hydroxy-L-lysine from the CaKDO-catalyzed reaction was successfully converted to (2S)-hydroxy-cadaverine without intermediate product purification, yielding a product titer of 11.6 g L−1 in a 15 mL consecutive batch reaction. We propose that covalent in situ immobilization is an appropriate tool to access the preparative potential of many other KDOs.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Arnold, Lilia
|0 P:(DE-Juel1)144164
|b 1
|u fzj
700 1 _ |a Wetzels, Solange
|0 P:(DE-Juel1)180209
|b 2
700 1 _ |a Bregu, Mariela
|0 P:(DE-Juel1)186705
|b 3
700 1 _ |a Gätgens, Jochem
|0 P:(DE-Juel1)129023
|b 4
700 1 _ |a Pohl, Martina
|0 P:(DE-Juel1)131522
|b 5
|e Corresponding author
773 _ _ |a 10.3390/catal12040354
|g Vol. 12, no. 4, p. 354 -
|0 PERI:(DE-600)2662126-5
|n 4
|p 354 -
|t Catalysts
|v 12
|y 2022
|x 2073-4344
856 4 _ |u https://juser.fz-juelich.de/record/906840/files/catalysts-12-00354.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906840
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131522
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-01-24T07:58:24Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-01-24T07:58:24Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-01-24T07:58:24Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-19
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21