001     906935
005     20240711113953.0
024 7 _ |a 10.1002/ctpp.202100172
|2 doi
024 7 _ |a 0005-8025
|2 ISSN
024 7 _ |a 0863-1042
|2 ISSN
024 7 _ |a 1521-3986
|2 ISSN
024 7 _ |a 2128/33999
|2 Handle
024 7 _ |a WOS:000768307900001
|2 WOS
037 _ _ |a FZJ-2022-01760
082 _ _ |a 570
100 1 _ |a Rode, Sebastian
|0 P:(DE-Juel1)181062
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Implementation and validation of guiding centre approximation into ERO2 .0
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1679044303_15787
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Monte-Carlo code ERO2.0 uses full orbit resolution to follow impurity particles throughout the plasma volume to determine the local erosion and deposition fluxes on the plasma-facing components of fusion devices in magnetic confinement fusion. To have direct comparisons to other transport codes (e.g., ASCOT and DIVIMP) and to accelerate the code, guiding centre approximation (GCA) was implemented into ERO2.0. In addition, a hybrid simulation mode for ERO2.0 was developed, in which the advantages of both full orbit resolution and guiding centre approximation are used. In typical scenarios in this simulation mode, full orbit resolution is applied exclusively near the wall region, while GCA is used everywhere else along a particle's trajectory. Special emphasis was put on the validation of the implementation by an inner-code benchmarking to pure full orbit simulations. Analysed scenarios included test plasmas with simplified geometry and a realistic test case corresponding to a deuterium limiter plasma used in JET pulse #80319. The results of simulations performed in the hybrid simulation mode are in very good agreement to corresponding pure full orbit simulations, while a significant code speed-up was achieved.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Romazanov, Juri
|0 P:(DE-Juel1)165905
|b 1
|u fzj
700 1 _ |a Reiser, Dirk
|b 2
700 1 _ |a Brezinsek, Sebastijan
|0 P:(DE-Juel1)129976
|b 3
|u fzj
700 1 _ |a Linsmeier, Christian
|0 P:(DE-Juel1)157640
|b 4
|u fzj
700 1 _ |a Pukhov, Alexander
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1002/ctpp.202100172
|0 PERI:(DE-600)2018082-2
|n 5-6
|p e202100172
|t Contributions to plasma physics
|v 62
|y 2022
|x 0005-8025
856 4 _ |u https://juser.fz-juelich.de/record/906935/files/Contributions%20to%20Plasma%20Physics%20-%202022%20-%20Rode%20-%20Implementation%20and%20validation%20of%20guiding%20centre%20approximation%20into%20ERO2%200.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906935
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)181062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2022
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CONTRIB PLASM PHYS : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21