001     906936
005     20230328130144.0
024 7 _ |a 10.1002/aelm.202101198
|2 doi
024 7 _ |a 2128/33995
|2 Handle
024 7 _ |a WOS:000762807700001
|2 WOS
037 _ _ |a FZJ-2022-01761
082 _ _ |a 621.3
100 1 _ |a Pedretti, Giacomo
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Differentiable Content Addressable Memory with Memristors
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH Verlag GmbH & Co. KG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677491013_26873
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Memristors, Flash, and related nonvolatile analog device technologies offer in-memory computing structures operating in the analog domain, such as accelerating linear matrix operations in array structures. These take advantage of analog tunability and large dynamic range. At the other side, content addressable memories (CAM) are fast digital lookup tables which effectively perform nonlinear Boolean logic and return a digital match/mismatch value. Recently, nonvolatile analog CAMs have been presented merging analog storage and analog search operations with digital match/mismatch output. However, CAM blocks cannot easily be inserted within a larger adaptive system due to the challenges of training and learning with binary outputs. Here, a missing link between analog crossbar arrays and CAMs, namely a differentiable content addressable memory (dCAM), is presented. Utilizing nonvolatile memories that act as a “soft” memory with analog outputs, dCAM enables learning and fine-tuning of the memory operation and performance. Four applications are quantitatively evaluated to highlight the capabilities: improved data pattern storage, improved robustness to noise and variability, reduced energy and latency performance, and an application to solving Boolean satisfiability optimization problems. The use of dCAM is envisioned as a core building block of fully differentiable computing systems employing multiple types of analog compute operations and memories.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Graves, Catherine E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Van Vaerenbergh, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Serebryakov, Sergey
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Foltin, Martin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sheng, Xia
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mao, Ruibin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Li, Can
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Strachan, John Paul
|0 P:(DE-Juel1)188145
|b 8
|e Corresponding author
773 _ _ |a 10.1002/aelm.202101198
|g p. 2101198 -
|0 PERI:(DE-600)2810904-1
|n 8
|p 2101198 -
|t Advanced electronic materials
|v 8
|y 2022
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/906936/files/Adv%20Elect%20Materials%20-%202022%20-%20Pedretti%20-%20Differentiable%20Content%20Addressable%20Memory%20with%20Memristors.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906936
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)188145
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2022
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2019
|d 2021-01-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ELECTRON MATER : 2019
|d 2021-01-28
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21