000906938 001__ 906938
000906938 005__ 20240712112838.0
000906938 0247_ $$2doi$$a10.1002/batt.202100415
000906938 0247_ $$2Handle$$a2128/31889
000906938 0247_ $$2WOS$$aWOS:000761131000001
000906938 037__ $$aFZJ-2022-01763
000906938 082__ $$a620
000906938 1001_ $$0P:(DE-Juel1)164223$$aWeinrich, Henning$$b0$$eCorresponding author
000906938 245__ $$aIn Situ Hydrogen Evolution Monitoring During the Electrochemical Formation and Cycling of Pressed‐Plate Carbonyl Iron Electrodes in Alkaline Electrolyte
000906938 260__ $$aWeinheim$$bWiley-VCH$$c2022
000906938 3367_ $$2DRIVER$$aarticle
000906938 3367_ $$2DataCite$$aOutput Types/Journal article
000906938 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663923960_14769
000906938 3367_ $$2BibTeX$$aARTICLE
000906938 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906938 3367_ $$00$$2EndNote$$aJournal Article
000906938 520__ $$aThe hydrogen evolution reaction (HER) on iron is a parasitic side reaction for the reduction of iron (hydr)oxide in alkaline electrolyte, which lowers the Coulombic efficiency of iron-based batteries. Tackling this issue, here we investigate the HER on iron electrodes by in situ gas chromatography, allowing for a quantitative correlation of the applied electrode potential and the resulting hydrogen evolution. As a result, it is shown that the HER follows a distinctive profile corresponding to the electrode potential and changes depending on the state of the iron electrode formation. Moreover, it is shown that the charging efficiency of the iron electrode can be increased by an alteration of the charging procedure, i. e., a more negative cut-off potential for the discharge and a potential limitation for the recharge. In this study, a charging efficiency of 96.7 % is achieved, using an optimized charging procedure for a formed carbonyl iron electrode containing 8.5 wt.% of Bi2S3.
000906938 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000906938 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906938 7001_ $$0P:(DE-Juel1)184721$$aPleie, Jan$$b1
000906938 7001_ $$0P:(DE-Juel1)179220$$aSchmid, Bernhard$$b2
000906938 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b3
000906938 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b4
000906938 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5
000906938 773__ $$0PERI:(DE-600)2897248-X$$a10.1002/batt.202100415$$pe202100415$$tBatteries & Supercaps$$v5$$x2566-6223$$y2022
000906938 8564_ $$uhttps://juser.fz-juelich.de/record/906938/files/Invoice_1009819.pdf
000906938 8564_ $$uhttps://juser.fz-juelich.de/record/906938/files/Invoice_22025.pdf
000906938 8564_ $$uhttps://juser.fz-juelich.de/record/906938/files/Invoice_5704912.pdf
000906938 8564_ $$uhttps://juser.fz-juelich.de/record/906938/files/Batteries%20Supercaps%20-%202022%20-%20Weinrich%20-%20In%20Situ%20Hydrogen%20Evolution%20Monitoring%20During%20the%20Electrochemical%20Formation%20and.pdf$$yOpenAccess
000906938 8767_ $$822025$$92022-02-24$$aBelegnr. 1200177841$$d2022-03-03$$eCover$$jZahlung erfolgt$$zFZJ-2022-01436
000906938 8767_ $$81009819$$92022-04-05$$aBelegnr. 1200179010$$d2022-04-29$$eCover$$jStorniert
000906938 8767_ $$85704912$$92022-05-06$$a1200181397$$d2022-06-01$$eCover$$jZahlung erfolgt
000906938 8767_ $$d2022-02-15$$eHybrid-OA$$jDEAL
000906938 909CO $$ooai:juser.fz-juelich.de:906938$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire
000906938 9141_ $$y2022
000906938 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906938 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-32$$wger
000906938 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000906938 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906938 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000906938 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000906938 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000906938 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000906938 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000906938 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-23
000906938 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000906938 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000906938 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000906938 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000906938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164223$$aForschungszentrum Jülich$$b0$$kFZJ
000906938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179220$$aForschungszentrum Jülich$$b2$$kFZJ
000906938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b3$$kFZJ
000906938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b4$$kFZJ
000906938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ
000906938 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH
000906938 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000906938 920__ $$lyes
000906938 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000906938 9801_ $$aAPC
000906938 9801_ $$aFullTexts
000906938 980__ $$ajournal
000906938 980__ $$aVDB
000906938 980__ $$aUNRESTRICTED
000906938 980__ $$aI:(DE-Juel1)IEK-9-20110218
000906938 980__ $$aAPC
000906938 981__ $$aI:(DE-Juel1)IET-1-20110218