000906938 001__ 906938 000906938 005__ 20240712112838.0 000906938 0247_ $$2doi$$a10.1002/batt.202100415 000906938 0247_ $$2Handle$$a2128/31889 000906938 0247_ $$2WOS$$aWOS:000761131000001 000906938 037__ $$aFZJ-2022-01763 000906938 082__ $$a620 000906938 1001_ $$0P:(DE-Juel1)164223$$aWeinrich, Henning$$b0$$eCorresponding author 000906938 245__ $$aIn Situ Hydrogen Evolution Monitoring During the Electrochemical Formation and Cycling of Pressed‐Plate Carbonyl Iron Electrodes in Alkaline Electrolyte 000906938 260__ $$aWeinheim$$bWiley-VCH$$c2022 000906938 3367_ $$2DRIVER$$aarticle 000906938 3367_ $$2DataCite$$aOutput Types/Journal article 000906938 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663923960_14769 000906938 3367_ $$2BibTeX$$aARTICLE 000906938 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000906938 3367_ $$00$$2EndNote$$aJournal Article 000906938 520__ $$aThe hydrogen evolution reaction (HER) on iron is a parasitic side reaction for the reduction of iron (hydr)oxide in alkaline electrolyte, which lowers the Coulombic efficiency of iron-based batteries. Tackling this issue, here we investigate the HER on iron electrodes by in situ gas chromatography, allowing for a quantitative correlation of the applied electrode potential and the resulting hydrogen evolution. As a result, it is shown that the HER follows a distinctive profile corresponding to the electrode potential and changes depending on the state of the iron electrode formation. Moreover, it is shown that the charging efficiency of the iron electrode can be increased by an alteration of the charging procedure, i. e., a more negative cut-off potential for the discharge and a potential limitation for the recharge. In this study, a charging efficiency of 96.7 % is achieved, using an optimized charging procedure for a formed carbonyl iron electrode containing 8.5 wt.% of Bi2S3. 000906938 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0 000906938 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000906938 7001_ $$0P:(DE-Juel1)184721$$aPleie, Jan$$b1 000906938 7001_ $$0P:(DE-Juel1)179220$$aSchmid, Bernhard$$b2 000906938 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b3 000906938 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b4 000906938 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5 000906938 773__ $$0PERI:(DE-600)2897248-X$$a10.1002/batt.202100415$$pe202100415$$tBatteries & Supercaps$$v5$$x2566-6223$$y2022 000906938 8564_ $$uhttps://juser.fz-juelich.de/record/906938/files/Invoice_1009819.pdf 000906938 8564_ $$uhttps://juser.fz-juelich.de/record/906938/files/Invoice_22025.pdf 000906938 8564_ $$uhttps://juser.fz-juelich.de/record/906938/files/Invoice_5704912.pdf 000906938 8564_ $$uhttps://juser.fz-juelich.de/record/906938/files/Batteries%20Supercaps%20-%202022%20-%20Weinrich%20-%20In%20Situ%20Hydrogen%20Evolution%20Monitoring%20During%20the%20Electrochemical%20Formation%20and.pdf$$yOpenAccess 000906938 8767_ $$822025$$92022-02-24$$aBelegnr. 1200177841$$d2022-03-03$$eCover$$jZahlung erfolgt$$zFZJ-2022-01436 000906938 8767_ $$81009819$$92022-04-05$$aBelegnr. 1200179010$$d2022-04-29$$eCover$$jStorniert 000906938 8767_ $$85704912$$92022-05-06$$a1200181397$$d2022-06-01$$eCover$$jZahlung erfolgt 000906938 8767_ $$d2022-02-15$$eHybrid-OA$$jDEAL 000906938 909CO $$ooai:juser.fz-juelich.de:906938$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire 000906938 9141_ $$y2022 000906938 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000906938 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-32$$wger 000906938 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32 000906938 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000906938 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32 000906938 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23 000906938 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23 000906938 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23 000906938 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23 000906938 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-23 000906938 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000906938 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000906938 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000906938 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019 000906938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164223$$aForschungszentrum Jülich$$b0$$kFZJ 000906938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179220$$aForschungszentrum Jülich$$b2$$kFZJ 000906938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b3$$kFZJ 000906938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b4$$kFZJ 000906938 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b5$$kFZJ 000906938 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b5$$kRWTH 000906938 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 000906938 920__ $$lyes 000906938 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0 000906938 9801_ $$aAPC 000906938 9801_ $$aFullTexts 000906938 980__ $$ajournal 000906938 980__ $$aVDB 000906938 980__ $$aUNRESTRICTED 000906938 980__ $$aI:(DE-Juel1)IEK-9-20110218 000906938 980__ $$aAPC 000906938 981__ $$aI:(DE-Juel1)IET-1-20110218