001     906938
005     20240712112838.0
024 7 _ |2 doi
|a 10.1002/batt.202100415
024 7 _ |2 Handle
|a 2128/31889
024 7 _ |a WOS:000761131000001
|2 WOS
037 _ _ |a FZJ-2022-01763
082 _ _ |a 620
100 1 _ |0 P:(DE-Juel1)164223
|a Weinrich, Henning
|b 0
|e Corresponding author
245 _ _ |a In Situ Hydrogen Evolution Monitoring During the Electrochemical Formation and Cycling of Pressed‐Plate Carbonyl Iron Electrodes in Alkaline Electrolyte
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2022
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1663923960_14769
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The hydrogen evolution reaction (HER) on iron is a parasitic side reaction for the reduction of iron (hydr)oxide in alkaline electrolyte, which lowers the Coulombic efficiency of iron-based batteries. Tackling this issue, here we investigate the HER on iron electrodes by in situ gas chromatography, allowing for a quantitative correlation of the applied electrode potential and the resulting hydrogen evolution. As a result, it is shown that the HER follows a distinctive profile corresponding to the electrode potential and changes depending on the state of the iron electrode formation. Moreover, it is shown that the charging efficiency of the iron electrode can be increased by an alteration of the charging procedure, i. e., a more negative cut-off potential for the discharge and a potential limitation for the recharge. In this study, a charging efficiency of 96.7 % is achieved, using an optimized charging procedure for a formed carbonyl iron electrode containing 8.5 wt.% of Bi2S3.
536 _ _ |0 G:(DE-HGF)POF4-1223
|a 1223 - Batteries in Application (POF4-122)
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)184721
|a Pleie, Jan
|b 1
700 1 _ |0 P:(DE-Juel1)179220
|a Schmid, Bernhard
|b 2
700 1 _ |0 P:(DE-Juel1)161208
|a Tempel, Hermann
|b 3
700 1 _ |0 P:(DE-Juel1)157700
|a Kungl, Hans
|b 4
700 1 _ |0 P:(DE-Juel1)156123
|a Eichel, Rüdiger-A.
|b 5
773 _ _ |0 PERI:(DE-600)2897248-X
|a 10.1002/batt.202100415
|p e202100415
|t Batteries & Supercaps
|v 5
|x 2566-6223
|y 2022
856 4 _ |u https://juser.fz-juelich.de/record/906938/files/Invoice_1009819.pdf
856 4 _ |u https://juser.fz-juelich.de/record/906938/files/Invoice_22025.pdf
856 4 _ |u https://juser.fz-juelich.de/record/906938/files/Invoice_5704912.pdf
856 4 _ |u https://juser.fz-juelich.de/record/906938/files/Batteries%20Supercaps%20-%202022%20-%20Weinrich%20-%20In%20Situ%20Hydrogen%20Evolution%20Monitoring%20During%20the%20Electrochemical%20Formation%20and.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906938
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)164223
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)179220
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161208
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157700
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156123
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)156123
|a RWTH Aachen
|b 5
|k RWTH
913 1 _ |0 G:(DE-HGF)POF4-122
|1 G:(DE-HGF)POF4-120
|2 G:(DE-HGF)POF4-100
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-1223
|a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|v Elektrochemische Energiespeicherung
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-32
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-32
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-23
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21