000906951 001__ 906951
000906951 005__ 20230123110609.0
000906951 0247_ $$2doi$$a10.1088/2053-1583/ac5d0e
000906951 0247_ $$2Handle$$a2128/30924
000906951 0247_ $$2altmetric$$aaltmetric:125469137
000906951 0247_ $$2WOS$$aWOS:000772186600001
000906951 037__ $$aFZJ-2022-01769
000906951 082__ $$a530
000906951 1001_ $$00000-0002-9592-4155$$aYang, Hung-Hsiang$$b0
000906951 245__ $$aMagnetic domain walls of the van der Waals material Fe 3 GeTe 2
000906951 260__ $$aBristol$$bIOP Publ.$$c2022
000906951 3367_ $$2DRIVER$$aarticle
000906951 3367_ $$2DataCite$$aOutput Types/Journal article
000906951 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648458130_4009
000906951 3367_ $$2BibTeX$$aARTICLE
000906951 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906951 3367_ $$00$$2EndNote$$aJournal Article
000906951 520__ $$aAmong two-dimensional materials, Fe3GeTe2 has come to occupy a very important place owing to its ferromagnetic nature with one of the highest Curie temperatures among known van der Waals materials and the potential for hosting skyrmions. In this combined experimental and theoretical work, we investigate the magnetic bubble domains as well as the microscopic domain wall profile using spin-polarized scanning tunneling microscopy in combination with atomistic spin-dynamics simulations performed with parameters from density functional theory calculations. We find a weak magneto-electric effect influencing the domain wall width by the electric field in the tunneling junction and determine the critical magnetic field for the collapse of the bubble domains. Our findings shed light on the origins of complex magnetism that Fe3GeTe2 exhibits.
000906951 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000906951 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906951 7001_ $$0P:(DE-HGF)0$$aBansal, Namrata$$b1$$eCorresponding author
000906951 7001_ $$0P:(DE-Juel1)157882$$aRüßmann, Philipp$$b2
000906951 7001_ $$0P:(DE-Juel1)162311$$aHoffmann, Markus$$b3$$ufzj
000906951 7001_ $$0P:(DE-Juel1)174385$$aZhang, Lichuan$$b4
000906951 7001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b5$$ufzj
000906951 7001_ $$00000-0003-3740-9320$$aLi, Qili$$b6
000906951 7001_ $$0P:(DE-HGF)0$$aHaghighirad, Amir-Abbas$$b7
000906951 7001_ $$0P:(DE-HGF)0$$aSen, Kaushik$$b8
000906951 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b9$$ufzj
000906951 7001_ $$00000-0002-5838-3724$$aLe Tacon, Matthieu$$b10
000906951 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b11
000906951 7001_ $$0P:(DE-HGF)0$$aWulfhekel, Wulf$$b12
000906951 773__ $$0PERI:(DE-600)2779376-X$$a10.1088/2053-1583/ac5d0e$$gVol. 9, no. 2, p. 025022 -$$n2$$p025022$$t2D Materials$$v9$$x2053-1583$$y2022
000906951 8564_ $$uhttps://juser.fz-juelich.de/record/906951/files/Yang_2022_2D_Mater._9_025022.pdf$$yOpenAccess
000906951 909CO $$ooai:juser.fz-juelich.de:906951$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b2$$kFZJ
000906951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162311$$aForschungszentrum Jülich$$b3$$kFZJ
000906951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174385$$aForschungszentrum Jülich$$b4$$kFZJ
000906951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b5$$kFZJ
000906951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b9$$kFZJ
000906951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b11$$kFZJ
000906951 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000906951 9141_ $$y2022
000906951 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906951 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000906951 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906951 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000906951 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-18$$wger
000906951 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$b2D MATER : 2021$$d2022-11-18
000906951 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000906951 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000906951 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000906951 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000906951 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-18
000906951 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$b2D MATER : 2021$$d2022-11-18
000906951 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000906951 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000906951 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000906951 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000906951 980__ $$ajournal
000906951 980__ $$aVDB
000906951 980__ $$aUNRESTRICTED
000906951 980__ $$aI:(DE-Juel1)IAS-1-20090406
000906951 980__ $$aI:(DE-Juel1)PGI-1-20110106
000906951 980__ $$aI:(DE-82)080009_20140620
000906951 980__ $$aI:(DE-82)080012_20140620
000906951 9801_ $$aFullTexts