000906952 001__ 906952 000906952 005__ 20220419125823.0 000906952 0247_ $$2doi$$a10.1142/S0219749919410089 000906952 0247_ $$2ISSN$$a0219-7499 000906952 0247_ $$2ISSN$$a1793-6918 000906952 0247_ $$2Handle$$a2128/30984 000906952 0247_ $$2altmetric$$aaltmetric:78521458 000906952 0247_ $$2WOS$$aWOS:000519696100007 000906952 037__ $$aFZJ-2022-01770 000906952 082__ $$a510 000906952 1001_ $$0P:(DE-HGF)0$$aPozza, Nicola Dalla$$b0$$eCorresponding author 000906952 245__ $$aRole of the filter functions in noise spectroscopy 000906952 260__ $$aSingapore [u.a.]$$bWorld Scientific$$c2019 000906952 3367_ $$2DRIVER$$aarticle 000906952 3367_ $$2DataCite$$aOutput Types/Journal article 000906952 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1649225121_24152 000906952 3367_ $$2BibTeX$$aARTICLE 000906952 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000906952 3367_ $$00$$2EndNote$$aJournal Article 000906952 520__ $$aThe success of quantum noise sensing methods depends on the optimal interplay between properly designed control pulses and statistically informative measurement data on a specific quantum-probe observable. To enhance the information content of the data and reduce as much as possible the number of measurements on the probe, the filter orthogonalization method has been recently introduced. The latter is able to transform the control filter functions on an orthogonal basis allowing for the optimal reconstruction of the noise power spectral density. In this paper, we formalize this method within the standard formalism of minimum mean squared error estimation and we show the equivalence between the solutions of the two approaches. Then, we introduce a nonnegative least squares formulation that ensures the nonnegativeness of the estimated noise spectral density. Moreover, we also propose a novel protocol for the design in the frequency domain of the set of filter functions. The frequency-designed filter functions and the nonnegative least squares reconstruction are numerically tested on noise spectra with multiple components and as a function of the estimation parameters. 000906952 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0 000906952 536__ $$0G:(EU-Grant)820394$$aASTERIQS - Advancing Science and TEchnology thRough dIamond Quantum Sensing (820394)$$c820394$$fH2020-FETFLAG-2018-03$$x1 000906952 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000906952 7001_ $$0P:(DE-HGF)0$$aGherardini, Stefano$$b1 000906952 7001_ $$0P:(DE-Juel1)178646$$aMüller, Matthias$$b2$$ufzj 000906952 7001_ $$0P:(DE-HGF)0$$aCaruso, Filippo$$b3 000906952 773__ $$0PERI:(DE-600)2115441-7$$a10.1142/S0219749919410089$$gVol. 17, no. 08, p. 1941008 -$$n08$$p1941008 -$$tInternational journal of quantum information$$v17$$x0219-7499$$y2019 000906952 8564_ $$uhttps://juser.fz-juelich.de/record/906952/files/1911.10598.pdf$$yOpenAccess 000906952 909CO $$ooai:juser.fz-juelich.de:906952$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000906952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178646$$aForschungszentrum Jülich$$b2$$kFZJ 000906952 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 000906952 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04 000906952 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04 000906952 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04 000906952 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04 000906952 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04 000906952 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000906952 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04 000906952 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J QUANTUM INF : 2019$$d2021-05-04 000906952 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04 000906952 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04 000906952 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04 000906952 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0 000906952 9801_ $$aFullTexts 000906952 980__ $$ajournal 000906952 980__ $$aVDB 000906952 980__ $$aUNRESTRICTED 000906952 980__ $$aI:(DE-Juel1)PGI-8-20190808