001 | 906952 | ||
005 | 20220419125823.0 | ||
024 | 7 | _ | |a 10.1142/S0219749919410089 |2 doi |
024 | 7 | _ | |a 0219-7499 |2 ISSN |
024 | 7 | _ | |a 1793-6918 |2 ISSN |
024 | 7 | _ | |a 2128/30984 |2 Handle |
024 | 7 | _ | |a altmetric:78521458 |2 altmetric |
024 | 7 | _ | |a WOS:000519696100007 |2 WOS |
037 | _ | _ | |a FZJ-2022-01770 |
082 | _ | _ | |a 510 |
100 | 1 | _ | |a Pozza, Nicola Dalla |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Role of the filter functions in noise spectroscopy |
260 | _ | _ | |a Singapore [u.a.] |c 2019 |b World Scientific |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1649225121_24152 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The success of quantum noise sensing methods depends on the optimal interplay between properly designed control pulses and statistically informative measurement data on a specific quantum-probe observable. To enhance the information content of the data and reduce as much as possible the number of measurements on the probe, the filter orthogonalization method has been recently introduced. The latter is able to transform the control filter functions on an orthogonal basis allowing for the optimal reconstruction of the noise power spectral density. In this paper, we formalize this method within the standard formalism of minimum mean squared error estimation and we show the equivalence between the solutions of the two approaches. Then, we introduce a nonnegative least squares formulation that ensures the nonnegativeness of the estimated noise spectral density. Moreover, we also propose a novel protocol for the design in the frequency domain of the set of filter functions. The frequency-designed filter functions and the nonnegative least squares reconstruction are numerically tested on noise spectra with multiple components and as a function of the estimation parameters. |
536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
536 | _ | _ | |a ASTERIQS - Advancing Science and TEchnology thRough dIamond Quantum Sensing (820394) |0 G:(EU-Grant)820394 |c 820394 |f H2020-FETFLAG-2018-03 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Gherardini, Stefano |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Müller, Matthias |0 P:(DE-Juel1)178646 |b 2 |u fzj |
700 | 1 | _ | |a Caruso, Filippo |0 P:(DE-HGF)0 |b 3 |
773 | _ | _ | |a 10.1142/S0219749919410089 |g Vol. 17, no. 08, p. 1941008 - |0 PERI:(DE-600)2115441-7 |n 08 |p 1941008 - |t International journal of quantum information |v 17 |y 2019 |x 0219-7499 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/906952/files/1911.10598.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:906952 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)178646 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-05-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-05-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J QUANTUM INF : 2019 |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-8-20190808 |k PGI-8 |l Quantum Control |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-8-20190808 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|