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Abstract

The success of quantum noise sensing methods depends on the op-
timal interplay between properly designed control pulses and statisti-
cally informative measurement data on a specific quantum-probe ob-
servable. To enhance the information content of the data and reduce
as much as possible the number of measurements on the probe, the fil-
ter orthogonalization method has been recently introduced. The latter
is able to transform the control filter functions on an orthogonal ba-
sis allowing for the optimal reconstruction of the noise power spectral
density. In this paper, we formalize this method within the standard
formalism of minimum mean squared error estimation and we show
the equivalence between the solutions of the two approaches. Then,
we introduce a non-negative least squares formulation that ensures the
non-negativeness of the estimated noise spectral density. Moreover, we
also propose a novel protocol for the design in the frequency domain of
the set of filter functions. The frequency-designed filter functions and
the non-negative least squares reconstruction are numerically tested
on noise spectra with multiple components and as a function of the
estimation parameters.
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1 Introduction

The sensing of stochastic fluctuations entering in the dynamics of an open
quantum system is a crucial issue to be addressed to make quantum tech-
nologies operating and high-performing.1–3 Stochastic fluctuations usually
originate from external noise sources, and, in this case, one has to refer
to quantum noise sensing techniques.4–13 Also quantum noise, i.e. the in-
evitable decoherence of a quantum system through entanglement with its
quantum environment, can very often be modeled by a classical stochastic
field.14

The aim of noise sensing is to infer spectral properties of noise fluc-
tuation fields affecting a quantum system used as a probe. Usually, the
most significant quantity to reconstruct is the noise power spectral density

S(ω), which is formally defined as the Fourier transform of the noise auto-
correlation function. In order to selectively measure specific portions of
the noise power spectral density, the system is coherently manipulated with
properly designed control signals.7, 11, 15–19 In the context of noise sensing,
the squared module of each control signal Fourier transform is called filter

function F (ω). Its introduction has become important since it was shown
that S(ω) and F (ω) are linked by a general relation20–22 quantifying the
overlap χ between the effects of noise and control on the quantum probe
dynamics, i.e. ∫ +∞

−∞

S(ω)F (ω) dω = χ , (1)

irrespective of the physical realization of the control pulses. In the sensing
protocol, we manipulate the system with different control signals, and from
the statistics of the data we aim at inverting the relation (1).

Despite this universal formula, the design of filter functions can fail for
the purpose of sensing once applied to the quantum sensor. The reasons
of this can be bi-fold:23 (i) The power spectral density we want to infer is
completely unknown a-priori; (ii) the physical implementation of the con-
trol pulses is limited by experimental constraints and imperfections. To
overcome these issues, the Filter Orthogonalization (FO) method has been
recently proposed11 with the aim to make the sensing procedure robust, irre-
spective of the presence of imperfections in control and detection apparata,
respectively. The motivation behind this method is to successfully use also
the information coming from filter functions that have not been designed
as an orthogonal basis due to physical limitations. In this respect, the FO
protocol determines the basis transformation that orthogonalizes a set of
filter functions to solve the inference problem of noise spectral properties on
a completely informative (mathematical) working space, leading to a high
reconstruction fidelity. The method has been lately experimentally adopted
on an engineered Bose-Einstein condensate of 87Rb atoms realized on an
atom chip.13 It is worth noting that a similar approach, also relying on
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the use of the Gramian matrix, has been lately proposed to facilitate the
derivation of the quantum Fisher information in many quantum statistical
models.24

In this paper, we formalise the FO method within the framework of mini-
mum mean squared error (MSE) estimation.25,26 In particular, we show that
the FO estimation is obtained as a linear combination of the filter functions,
where the coefficients are given by the solution of the MSE minimization
by means of Least Squares (LS). We further analyze this minimization and
address the issue that the reconstructed power spectral density may exhibit
negative values at some frequencies after an estimation from noisy data. We
propose a Non-Negative Least Squares (NNLS) minimization of the MSE,
which can be solved numerically.

Since the FO estimate is given by a linear combination of the filter func-
tions within a range of frequencies, one could improve the design of each
control pulse by also ensuring the estimation procedure fulfills specific prop-
erties in the frequency domain. In particular, to obtain a good spectral
density estimation on a given frequency interval, the filter functions should
cover it uniformly, possibly with disjoint frequency support. We develop
this intuition into a novel strategy for the design of the set of filter func-
tions, which are chosen to have a fixed ratio of the bandwidth overlap of
their main peaks. This Bandwidth-Overlap Design (BOD) is then tested
in comparison with two sensing protocols employing multipulse sequences,
i.e. Periodic Dynamical Decoupling (PDD) sequences3, 5, 27 and Carr-Purcell
(CP) sequences.5,28

The paper is organized as follows. In Section 2 we introduce the MSE
minimization and from its solution we recover the FO estimation. We cover
the minimization by means of least squares and non-negative least squares.
In Section 3 we introduce the bandwidth-overlap design of filter functions.
In Section 4 we numerically compare the performance of this design against
PDD and CP protocols, both with least squares and non-negative least
squares estimation. Section 5 concludes the paper.

2 Problem Statement and Results

Let us consider a wide-sense stationary stochastic process Ω(t), that is, a
stochastic process that is stationary in the mean, 〈Ω(t)〉 = mΩ, and also in
its auto-correlation, 〈Ω(t)Ω(t− τ)〉 = g(τ). This stochastic process could be
for instance a time fluctuating classical field that couples a quantum system
to an external environment.8, 11, 13 Without loss of generality, we assume the
stochastic process to have zero mean, i.e., mΩ = 0.

For a wide-sense stationary process, the power spectral density is well-
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defined from the Fourier transform of the auto-correlation function,

S(ω) =

∫ +∞

−∞

g(t)e−iωt dt , (2)

which can also be inverted to recover g(t) as

g(t) =
1

2π

∫ +∞

−∞

S(ω)eiωt dω . (3)

In many instances, the quantum system can be coherently manipulated
via a control signal Ωc(t), which acts on each single stochastic realization of
Ω(t) as a modulation. After this interaction, at the end of the applied control
protocol, a measurement is usually performed. Then, from the statistics of
repeated final measurements, one can relate the true power spectral density
S(ω) with the action of the control pulse by introducing the second-order
correlation function χ:

χ =

∫ +∞

−∞

∫ +∞

−∞

Ωc(t)Ωc(t
′)〈Ω(t)Ω(t′)〉 dt dt′ =

∫ +∞

−∞

S(ω)F (ω) dω . (4)

In Eq. (4), F (ω) denotes the filter function, which is defined as

F (ω) =
1

2π

∣∣∣∣
∫ +∞

−∞

Ωc(t) e
−iωt dt

∣∣∣∣
2

. (5)

This overlap between filter function and noise spectral density is also called
the universal formula of quantum sensing.20, 21 This is the case for instance
of the experimental results in Ref.13 , where the control pulse Ωc is a resonant
microwave field with amplitude modulated by a periodic square-wave, which
drives the transition between the ground and excited state of a two-level
quantum sensor, engineered within a Rubidium Bose-Einstein condensate.
In addition to the control field, the sensor is also driven by some external
noise which we describe as a semi-classical stochastic process Ω(t). In the
specific case of Ref.13 , also a sequence of projective measurement in the
so-called weak Zeno regime29, 30 is applied on the probe, with a rate pro-
portional to the periodicity of Ωc. This leads to the advantage to allow for
the inference of χ by directly measuring the atomic population in the sensor
ground state.

The aim of many sensing techniques is to provide an estimation Ŝ(ω) of
the true spectral density S(ω). A set of filter functions Fn(ω) is employed

in the sensing protocol, each of them using a different control signal Ω
(n)
c (t),

with n being an index representing a configuration of its parameters. We
estimate S(ω) by exploiting the relation between the power spectral density,
the filter functions and the corresponding measurement data χn,

∫ +∞

−∞

S(ω)Fn(ω) dω = χn . (6)

4



A simple idea to estimate S(ω) consists in discretizing both S(ω) and Fn(ω)
in the frequency domain, defining the column Sk = S(k∆ω) and the matrix
Fn,k = Fn(k∆ω) and solving the linear system

FS = χ , (7)

with χ being the vector collecting the second-order correlation functions
χn. It is easy to realize that this approach quickly fails when the frequency
discretization of F, obtained for instance from a discrete Fourier transform
of the corresponding control, gives a number of unknowns (or degrees of
freedom) in S usually orders of magnitude higher than the number of con-
trols (or measurements) that one usually has available. Attempts to solve
the system with Moore-Penrose pseudoinverse usually results in bad esti-
mates due to ill-conditioning of the inversion problem. This approach was
investigated in Ref.5 where a stable inverse has been achieved by choosing
the main peaks of the filter functions as the discrete values of ω (leading to
a square matrix F). Furthermore, the system (7) gives an idea of what a
good filter function would be. If each filter function excites a narrow band
of frequencies of S(ω), i.e. one or few of the components Sk, the inversion
would be simplified. We will explore this intuition in Section 3 to design
improved filter functions.

Rather than directly solving the system (7), let’s define our spectrum
estimate as a finite linear combination of the filter functions, i.e.,

Ŝ(ω) =
N∑

n=1

anFn(ω) , (8)

We then define the optimal estimation as the solution of a minimization
problem with the mean squared error criterion,25

MSE =

∫ +∞

−∞

[
S(ω)− Ŝ(ω)

]2
dω (9)

with respect to the vector a collecting the coefficients [a]n = an.
Here, it is worth noting that in the space of the control signals defined

on the Fourier domain1, the set of filter function Fn is in general not or-
thonormal, in the sense that

∫ +∞

−∞

Fn(ω)Fm(ω) dω = Gn,m 6= δn,m , (10)

where δn,m denotes the Kronecker delta. The non-orthonormality of the filter
functions usually comes from physical limitations in the implementation of

1For a more rigorous definition of the space of signals refer to signal processing text-
books such as Ref.31

5



the control pulses rather than being designed on purpose. All the inner
products Gn,m are collected in the Gramian matrix G. If we introduce an

orthonormal basis {F̃}Kk=1 for Fn, we can write

Fn(ω) =

K∑

k=1

bn,kF̃k(ω) , (11)

where B is the matrix collecting the coefficients bn,k = [B]n,k, verifying

G = BBT . Thus, if we write S(ω) in the orthonormal basis {F̃}Kk=1 that
we formally extend for indices k ≥ K + 1, i.e.,

S(ω) =

+∞∑

k=1

ckF̃k(ω) (12)

then we can rewrite the mean squared error as

MSE =

∫ +∞

−∞

[
+∞∑

k=1

ckF̃k(ω)−
N∑

n=1

an

K∑

k=1

bn,kF̃k(ω)

]2
dω (13)

=

∫ +∞

−∞

[
K∑

k=1

(
ck −

N∑

n=1

anbn,k

)
F̃k(ω) +

+∞∑

k=K+1

ckF̃k(ω)

]2
dω (14)

=

K∑

k=1

(
ck −

N∑

n=1

anbn,k

)2

+

+∞∑

k=K+1

c2k (15)

=

K∑

k=1

(ck − ãk)
2 +

+∞∑

k=K+1

c2k . (16)

A few observations can be made. In the case the true spectrum has finite
power P =

∫ +∞

−∞
S(ω) dω, the infinite sum

∑+∞
k=K+1 c

2
k is also finite. This

term evaluates to the same value independently on how we extend the basis
F̃k for k ≥ K+1. For this reason, we collect in the vector c only the entries
ck, k = 1, . . . K.

In some sense, the term
∑+∞

k=K+1 c
2
k is a residual error that stems from

the fact that the finite set of filter function is not sufficient to represent the
possibly infinite-dimensional spectrum. A good sensing procedure would
thus choose a set of Fn that keeps the main components ck of the true
spectrum in the first term of (16), leaving smaller components in the second
one. Therefore, the problem of minimizing the mean squared error with
respect to a reduces to a LS minimization of the first term with respect to
ã = BTa, that is, with respect to the coefficients of the estimated spectral
density Ŝ(ω) in the orthonormal basis {F̃}Kk=1, Ŝ(ω) =

∑K
k=1 ãkF̃k(ω).
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To this end, note that in the orthonormal basis the vector of data [χ]n =
χn is written as χ = Bc, since

χn =

∫ +∞

−∞

S(ω)Fn(ω) dω =

∫ +∞

−∞

S(ω)

K∑

k=1

bn,k F̃k(ω) dω (17)

=
K∑

k=1

bn,k

∫ +∞

−∞

S(ω)F̃k(ω) dω =
K∑

k=1

bn,k ck . (18)

Thus, we are allowed to rewrite the minimization problem of the first
term of Eq. (16) as a function of the previously-defined matrices:

min
ã

(c− ã)T (c− ã) = min
a

(c −BTa)T (c−BTa) (19)

= min
a

aTBBTa− cTBTa− aTBc+ cT c (20)

= cT c+min
a

aTGa− 2χTa . (21)

Note that in (19), we could just resolve by setting c = ã, but both c and a
are unknown, and for this reason we reformulate the problem in the known
parameters G, χ and in the optimization variable a. By taking the singular
value decomposition of the Gramian matrix G = UΛUT , we define u =
UTa, x = UT

χ and obtain

min
u

uTΛu− 2xTu , (22)

which has solution

uk =
xk

Λk

, k = 1, . . . K, with a = UΛ−1UT
χ . (23)

The analytical solution (23) gives the same spectral estimation of the Filter
Orthogonalization procedure presented in Refs. 11,23. Note that, in general,
the rank of the Gramian matrix G is K ≤ N . Sometimes it is beneficial to
employ a truncated singular value decomposition,32 that is, to consider only
the highest R eigenvalues λk = Λk, k = 1, . . . R and to approximate the
Gramian with G(trunc.) = Udiag(λ1, . . . , λR, 0, . . . , 0)U

T . In this way, the
components corresponding to the smallest eigenvalues, which are likely to
be large and sensible to noisy data χ, are neglected, resulting in a smoother
estimate.

As a concluding remark, we show that the solution obtained in Eq. (23)
coincides with the solution of Eq. (7) obtained via pseudoinverse,

S = (FTF)−1FT
χ , (24)

when the filter function and the spectrum are discretized in the frequency
domain with the same discretization ∆ω that can be used to numerically
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evaluate the integral (10) defining the Gramian. The following is not meant
to be a formal proof but to rather give an intuition of the equivalence. In
this respect, let us define F as a rectangular matrix with NR = N rows,
with NR the number of controls, and NC columns, where NC denotes the
number of unknown S. As previously anticipated, usually NC ≫ NR, with
the consequence that the squared matrix FTF is rank deficient. The matrices
F, G and FTF are related via their singular value decomposition,

F = U
√
ΛVT , G = FFT = UΛUT , FTF = VΛVT (25)

where U, Λ, V have been extended in their size but keeping the correct
images and kernels, and verifying the relations UTU = I, VTV = I. Then,
we get

S = (FTF)−1FT
χ = (VΛVT )−1V

√
ΛUT

χ = V(
√
Λ)−1UT

χ (26)

= V
√
ΛUTUΛ−1UT

χ = FTa . (27)

This means that the solution by pseudoinverse is a linear combination of
filter functions given by the optimal coefficients a of Eq. (23). The reason
for a bad estimate via pseudo-inversion lies in the difficulty and numerical
instability in finding the inverse of FTF.

2.1 Non-negative Least Squares Estimation

The minimization problems in Eqs. (19) and (22) are unconstrained prob-
lems in the optimization variables a and u. Being S(ω) a power spectral
density, a correct estimate should verify Ŝ(ω) ≥ 0 for all frequencies ω.
However, due to errors in the measurement of χ or due to the finite-size
subspace estimation of S(ω), we may obtain a solution with Ŝ(ω) < 0 for
some frequencies ω.

When this occurs, we may want to enforce our solution to give a non-
negative estimate Ŝ(ω). This is ensured by solving the optimization problem

min
a

(c−BTa)T (c−BTa) (28)

subject to

N∑

n=1

anFn(ω) ≥ 0, ∀ω ∈ [0,+∞) . (29)

If the filter functions Fn(ω) have disjoint support or the estimation error due
to the overlap between filters is negligible when compared to other sources
of errors, the constraints (29) reduces to an ≥ 0, n = 1, . . . N , since any
an < 0 would give Ŝ(ω) < 0 in the support of Fn(ω). With this assumption,
the problem can be formulated as a non-negative least squares problem,

min
an≥0

(c−BTa)T (c−BTa) , (30)
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which with the appropriate substitutions becomes

min
an≥0

aTGa− 2χTa . (31)

This is a quadratic programming problem whose solution can be found nu-
merically by using standard routines.33

3 Improved design of filter functions

In the previous sections, we have assumed the filter functions to be given in
the formulation of the problem. Here, we propose a novel strategy for the
improvement of their design, with a particular focus on the filter functions
already used in Ref.13 . While this is far from being a complete optimization
of the control signals, we believe that this proposal can be applied to other
sensing protocol to design high performing filter functions.

The intuition behind this improvement comes from the attempt to solve
the linear equation system in (7). As we have already anticipated, the inver-
sion of the relations (6) would be easier and immediate if the filter functions
excite few disjoint frequency components of the noise power spectral density.
To verify if this occurs, let us analyze the frequency domain of a commonly-
used filter function set. In this regard, we consider PDD sequences,3,5, 27

that is, a family of multipulse sensing sequences with M equally spaced
sign flips of Ωc at tj = jτ, j = 1, . . .M (realized by π-pulses3 or Zeno pro-
jective measurements13) parametrized by the interpulse duration τ . These

sequences originate piecewise constant control signals Ω
(n)
c (t) that switch be-

tween opposite values A
(n)
c at time instants tj. Such control signals are easy

to be generated and, thus, they are routinely implemented in experimental
setups. In the formulation of the previous sections, the index n = 1, . . . N
refers to a filter function with specific duration τn. A common choice for
the interpulse duration is to employ the multiples of a fixed minimum value
τn = nτ1. While this choice seems natural, a plot of the filter functions
reveals an imbalance in the range of the covered frequencies. In fact, the

Fourier transform of the control Ω
(n)
c (t), which is composed by M/2 periodic

square pulses, reads

F [Ω(n)
c ](ω) = Ac τn 2

log2 M ie−iMωτn

2 Sinc
(
ω
τn
2

)
sin
(
ω
τn
2

)
Π

log2 M−2
k=0 cos

(
2kωτn

)
,

(32)
where Sinc(·) denotes the sinc function and M is assumed to be a power of
2. The peaks of the corresponding filter function are at the odd harmonics
ωp = p π

τn
, p = 1, 3, . . . The main peak is the first one, with an amplitude of

4A2
cM

2τ2n/π
2 that gives the greatest contribution to excite the correspond-

ing frequency of the noise power spectral density. Around each harmonic
the filter function sharply goes to zero, becoming null for ω = π

τn
± 2π

Mτn
.
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Since the position of the peak depends on τn, the overlap between the filter
functions is more pronounced for an increasing value of n and thus of τn.
Overall, the frequency interval covered by the main peaks of all filter func-
tions ranges from ωmin = π

τN
to ωmax = π

τ1
, but is not evenly sampled since

filter functions with higher n overlaps in the bandwidth spanned by their
peaks. In Fig.1(a) we plot the main peak of five consecutive filter functions.
Both the spread of the peaks and the reduction in the amplitude are clearly
visible.
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Figure 1: Different designs of filter functions Fk, expressed in [1018 Hz2], as
a function of ω [106× rad/sec]. (a) From right to left, the main peak of the
filter functions F1 (yellow) to F5 (blue) with interpulse duration multiple of
a minimum period, τn = nτ1. The main peak of the filter function, corre-
sponding to the first harmonic at π

τn
, accumulates on the lower frequencies.

Amplitudes scale as τ2n. For F5 one can also see the peak corresponding
to the next harmonic (second blue smaller peak on the right corner). (b)
Filter functions designed with fixed bandwidth overlap between main peaks,
plotted from F1 (blue, on the left) to F4 (yellow, on the right). Note that

the control amplitude A
(n)
c has been scaled to have the same amplitude in

the main peak (see main text).

As a novel strategy, we propose to set first the amount of overlap in the
peak bandwidth of the filter functions, and then to evaluate τn. Specifically,
let us consider to have a filter function whose main peak is at π

τn
. The

frequency range around the main peak goes up to
(
1 + 2

M

)
π
τn
. Then, take

a second filter function defined by τn+1. The latter is chosen such that the
lower bandwidth of the main peak is at the 1− ε fraction of the upper band
of the previous filter function, characterized by a larger value of τn. More
formally, τn+1 has to verify the following relation:

(
1− 2

M

)
π

τn+1
=

(
1 +

2

M
− ε

4

M

)
π

τn
. (33)
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The parameter ε ∈ [0, 1] hence defines the bandwidth overlap of the main
peaks of consecutive filter functions. For ε = 0 the peaks have disjoint
support, for ε = 1 the peaks completely overlap and the filter functions
coincide. Solving (33) for τn+1 gives

τn+1 =

(
M − 2

M + 2− 4ε

)
τn =

(
M − 2

M + 2− 4ε

)n

τ1 , (34)

which can be used to define τn starting from τ1 in decreasing order. The
recursion is stopped when the last considered filter function overlaps the next
not null harmonic of the first filter function, which is placed at ωmax = 3π

τ1
.

In the case this overlap does not affect the estimation fidelity, in principle
we can continue to evaluate tn up to a subsequent not null harmonic. For
instance, in Section 4 we consider the set BOD(3) of filter functions designed
up to the 3rd harmonic of F1 and the set BOD(5) designed up to its 5th
harmonic.

To summarize, the design procedure of the filter function is the following:

1 - From the bandwidth [ωmin, ωmax] to be investigated, define τmax = τ1
such that π

τ1
< ωmin and ωmax < 3π

τ1

2 - Set the number N of sample points in [ωmin, ωmax], the overlap ε and
M (must be a power of 2). Since τN ≈ τ1/3, a rough estimate of N
can be obtained solving Eq. (34) with n = N−1 as a function of M, ε.

3 - Use Eq. (34) to evaluate τn+1, with n = 1, . . . N − 1 starting from τ1

4 - Optionally, the amplitude of the control signals in the Zeno sensing
protocol can be adjusted to have the same amplitude of the main peak

by putting A
(n)
c = A

(1)
c τ1/τn.

4 Numerical Simulations

In this section we show the results of the numerical simulations that we have
performed to compare different sensing protocols. We make the comparison
between two sensing protocols with the one obtained using the bandwidth-
overlap filter functions Design, both with LS and NNLS estimation.

Specifically, we consider as control signals Ωc(t) both PDD sequences,
with M equally spaced sign flips at tj = jτ, j = 1, . . .M , and CP multi-
pulse controls,5, 28 whereby the sign flips occur at tj = 2j−1

2 τ . Both these
sequences are squared waves with zero mean parametrized by the interpulse
duration τ . Note that, if we consider the same scenario of the experimental
setup of Ref.,13 a projective measurement is performed at every time instant
tj. Each projective measurement rapidly brings the atoms into the ground
state of the quantum probe with a given probability, thus allowing to keep
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the system in the weak Zeno regime.8, 11 This allows to recover the universal
formula (1), which is the base to set the estimation problem discussed in this
paper.

In the simulations we consider sequences of 32 sign flips of Ωc (realized
by π-pulses3 or Zeno projective measurements13). For the CP and PDD
protocols, we set up 32 control sequences. Their interpulse duration τn
linearly space from t1 = 1µs to t32 = 5µs, corresponding to the frequency
interval ranging from ωmin = π

τ32
= 6.28 × 105Hz to ωmax = π

τ1
= 3.14 ×

106Hz. Instead, in the case of the BOD protocol, we choose τ1 = 5µs and
evaluate tn with ε = 0.5 for two sets of filter functions, BOD(3) and BOD(5),
the former with 17 control pulses (up the third harmonic of F1, τ17 = 1.8µs),
and the latter with 25 filters (up to the fifth harmonic of F1, τ25 = 1.1µs).
The amplitudes of the control signals are chosen to verify the conditions of
the weak Zeno regime.8, 11, 13

As a first test on these protocols, we consider a Gaussian power spectral
density, i.e.

S(ω) =
N

2
√
2πσ2

e−
(ω−ν)2

2σ2 , ω ≥ 0, (35)

with N = 108 Hz2, σ = 2π× 30 kHz. We run the simulations for ν ranging
from 2π × 50 kHz to 2π × 550 kHz every 10 kHz. Each spectral density is
reconstructed for each protocol CP, PDD, BOD(3) and BOD(5) by using
LS estimation. We calculate the fidelity between the true spectral density
S(ω) and the reconstructed one Ŝ(ω) by means of the following relation:

Fidelity =

∫ +∞

−∞
S(ω)Ŝ(ω) dω

∫ +∞

−∞
S(ω) dω

∫ +∞

−∞
Ŝ(ω) dω

, (36)

which allows to evaluate the quality of the estimation up to a scale factor.
The results are shown in Fig. 2. In the plot, we can notice that the four lines
corresponding to each protocol drop to zero outside the estimated frequency
range. All these protocols perform well in the first half of the chosen range
of ν, up to about 2π× 160kHz. Then, the fidelity of BOD(3) quickly drops
to zero since it has no filter functions with main peaks above this frequency.
CP and PDD perform similarly, slowly dropping in performance in the range
(2π × 160 kHz, 2π × 300 kHz). Instead, on the same interval the protocol
BOD(5) keeps the fidelity close to 1.
As a second test, we face the estimation of a spectral density with two
Gaussian components, i.e.

S(ω) =
N1

2
√

2πσ2
1

e
−

(ω−ν1)
2

2σ2
1 +

N2

2
√

2πσ2
2

e
−

(ω−ν2)
2

2σ2
2 , ω ≥ 0, (37)

with N1 = 108Hz2, N2 = 5 × 107Hz2, ν1 = 2π × 140 kHz, ν2 = 2π ×
260 kHz, σ1 = σ2 = 2π × 30 kHz. This spectrum is plotted in red dashed
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Figure 2: Reconstruction fidelity by using the protocols PDD (purple line,
square markers), CP (yellow line, diamond markers), BOD(3) (red line,
circle markers) and BOD(5) (blue line, star markers) when estimating a
Gaussian power spectral density with central frequency ν [106 × rad/sec].

line in Fig. 3.
We consider the protocols PDD, CP and BOD(3) with LS estimation ob-
tained by truncated singular value decomposition removing the 3 smallest
eigenvalues. We plot the estimated spectrum within the frequency range
spaced by the main peaks of the filter functions Fn in Fig. 3. For each of the
filter functions we use 50 noise realizations to evaluate χn.

The protocols PDD and CP behave similarly, managing to locate the two
Gaussian shapes in the power spectral density. However, in the right half
of the estimated spectrum there are oscillations that brings the estimate to
negative values. This is probably due to the fact that in the chosen frequency
interval the filter functions are more sparse. The protocol BOD(3), instead,
shows less oscillations in the estimate Ŝ(ω). For comparison, we also plot
the estimation that we obtain by the direct pseudo-inversion of (7), which
is not accurate and unavoidably shows some negative values.

Finally, we compare the performance of the sensing protocols when us-
ing the LS optimization or the NNLS minimization. We consider different
setups, with a small, medium, large dataset to evaluate χn as a sample mean
from respectively 10, 50 or 200 samples. We compare the averaged fidelity
over 250 simulations for the protocols PDD, CP, BOD(3) with overlap pa-
rameter ε ∈ {0.25, 0.5, 0.75}. The results are reported in Table 1. In the
LS estimation, we use a truncated singular value decomposition with the
highest half of the Gramian matrix eigenvalues. Furthermore, we set to zero
the negative components of the reconstructed spectrum before evaluating

13
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Figure 3: Qualitative evaluation of the sensing protocols performance by
comparing the obtained estimates Ŝ(ω), ω in 106× rad/sec. The protocols
PDD, CP and BOD(3) use the corresponding sequences described in the
main text and the LS estimate provided by Eq. (23). The pseudoinverse
method refers to the estimation obtained directly by Eq. (24), sampling the
spectrum and the filter functions with ∆ω = 6× 103Hz.

the fidelity.
As we can see, the PDD and CP protocols perform similarly. Their

averaged fidelity increases with the number of samples, i.e., with increasing
precision of the measurement of χn, and we can see an improvement when
NNLS is employed. The performance of BOD(3) varies depending on the
overlap parameter ε, showing higher fidelities with respect to PDD and CP
for ε ∈ {0.5, 0.75} and lower performances for ε = 0.25. An explanation for
this behaviour could be that in the latter case the protocols have too few
filter functions to provide a good estimation. Also, while for ε ∈ {0.25, 0.5}
the NNLS gives an improvement in the fidelity, in the case of ε = 0.75 the
performance worsens slightly. A reason for this could be that in this case the
filter functions overlap too much, and the constraints an ≥ 0 is too restrictive
respect to (29), such that the minimization (31) gives a suboptimal solution
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10 samples 50 samples 200 samples
Protocol N LS NNLS LS NNLS LS NNLS

PDD 32 0.8202 0.9129 0.8873 0.9664 0.9038 0.9849
CP 32 0.8214 0.9117 0.8898 0.9657 0.9074 0.9844

BOD3 (ε = 0.75) 34 0.9533 0.9232 0.9890 0.9715 0.9970 0.9880
BOD3 (ε = 0.50) 17 0.8969 0.9200 0.9198 0.9795 0.9241 0.9926
BOD3 (ε = 0.25) 11 0.6252 0.8415 0.6386 0.8833 0.6418 0.8926

Table 1: Average fidelity of the reconstructed power spectral density as a
function of the control protocol employed (PDD, CP or BOD(3)) and as a
function of the noise realizations (samples) used to evaluate χ, with the LS
and with NNLS approaches. Next to the protocol column, the number N of
filter functions employed. The fidelity values have been averaged over 250
simulations.

compared to the minimization (28)-(29).

5 Discussion and Conclusions

In this paper we provide a deeper understanding about why the filter orthog-
onalization procedure works in estimating a power spectral density of noise.
In fact, the method is equivalent to a least squares problem that minimize
the MSE between the true spectral density and its reconstruction, obtained
as a linear combination of orthogonalized filter functions. A set of linear
independent filter functions gives a full rank Gramian matrix and therefore
a good estimation, since each filter function adds new useful information to
be employed in the estimation procedure.

However, the least squares minimization may sometimes give unfeasible
estimation when the reconstructed power spectral density is negative at
certain frequencies. Hence, we have proposed a solution for this issue by
formulating the MSE minimization as a NNLS optimization, i.e., by forcing
the coefficients of the filter function combination to be non-negative.

Framing the solution of the estimation problem as a linear combination
of the filter functions allows also to evaluate the frequencies where the noise
spectrum can be reconstructed. The latter turns to be useful to design the
set of filter functions so that they uniformly cover the frequency interval of
the power spectral density that we want to estimate. With this purpose, we
have proposed a design, BOD, such that consecutive controls have a fixed
overlap ratio between their main peaks.

We have tested the BOD protocol and the NNLS estimation against the
PDD and the CP protocols over a set of significant parameters, such as the
number of data samples and the overlap ratio, obtaining a range of values
where each protocols gives the best performance.

15



Future investigations will address the possibility to further increase the
estimated frequency interval, and possibly test the BOD protocol in exper-
imental setups.
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