000906955 001__ 906955
000906955 005__ 20230123110609.0
000906955 0247_ $$2doi$$a10.1103/PhysRevApplied.17.034032
000906955 0247_ $$2ISSN$$a2331-7019
000906955 0247_ $$2ISSN$$a2331-7043
000906955 0247_ $$2Handle$$a2128/30927
000906955 0247_ $$2WOS$$aWOS:000770371400003
000906955 037__ $$aFZJ-2022-01773
000906955 082__ $$a530
000906955 1001_ $$0P:(DE-Juel1)161384$$aKrause, J.$$b0
000906955 245__ $$aMagnetic Field Resilience of Three-Dimensional Transmons with Thin-Film Al/AlO x / Al Josephson Junctions Approaching 1 T
000906955 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2022
000906955 3367_ $$2DRIVER$$aarticle
000906955 3367_ $$2DataCite$$aOutput Types/Journal article
000906955 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648468047_16318
000906955 3367_ $$2BibTeX$$aARTICLE
000906955 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906955 3367_ $$00$$2EndNote$$aJournal Article
000906955 520__ $$aMagnetic-field-resilient superconducting circuits enable sensing applications and hybrid quantum computing architectures involving spin or topological qubits and electromechanical elements, as well as studying flux noise and quasiparticle loss. We investigate the effect of in-plane magnetic fields up to 1 T on the spectrum and coherence times of thin-film three-dimensional aluminum transmons. Using a copper cavity, unaffected by strong magnetic fields, we can probe solely the effect of magnetic fields on the transmons. We present data on a single-junction and a superconducting-quantum-interference-device (SQUID) transmon that are cooled down in the same cavity. As expected, the transmon frequencies decrease with increasing field, due to suppression of the superconducting gap and a geometric Fraunhofer-like contribution. Nevertheless, the thin-film transmons show strong magnetic field resilience: both transmons display microsecond coherence up to at least 0.65 T, and T1 remains above 1μs over the entire measurable range. SQUID spectroscopy is feasible up to 1 T, the limit of our magnet. We conclude that thin-film aluminum Josephson junctions are suitable hardware for superconducting circuits in the high-magnetic-field regime.
000906955 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000906955 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906955 7001_ $$00000-0001-9242-2638$$aDickel, C.$$b1
000906955 7001_ $$0P:(DE-Juel1)181037$$aVaal, E.$$b2
000906955 7001_ $$00000-0003-1505-504X$$aVielmetter, M.$$b3
000906955 7001_ $$0P:(DE-Juel1)184891$$aFeng, J.$$b4$$ufzj
000906955 7001_ $$0P:(DE-HGF)0$$aBounds, R.$$b5
000906955 7001_ $$0P:(DE-Juel1)151130$$aCatelani, G.$$b6$$eCorresponding author
000906955 7001_ $$0P:(DE-Juel1)166466$$aFink, J. M.$$b7
000906955 7001_ $$00000-0002-3553-3355$$aAndo, Yoichi$$b8
000906955 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.17.034032$$gVol. 17, no. 3, p. 034032$$n3$$p034032$$tPhysical review applied$$v17$$x2331-7019$$y2022
000906955 8564_ $$uhttps://juser.fz-juelich.de/record/906955/files/PhysRevApplied.17.034032.pdf$$yOpenAccess
000906955 909CO $$ooai:juser.fz-juelich.de:906955$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906955 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181037$$aForschungszentrum Jülich$$b2$$kFZJ
000906955 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184891$$aForschungszentrum Jülich$$b4$$kFZJ
000906955 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b6$$kFZJ
000906955 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000906955 9141_ $$y2022
000906955 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000906955 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000906955 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906955 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000906955 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2021$$d2022-11-12
000906955 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000906955 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000906955 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000906955 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000906955 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000906955 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000906955 920__ $$lyes
000906955 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000906955 980__ $$ajournal
000906955 980__ $$aVDB
000906955 980__ $$aUNRESTRICTED
000906955 980__ $$aI:(DE-Juel1)PGI-11-20170113
000906955 9801_ $$aFullTexts