000906958 001__ 906958
000906958 005__ 20240712113124.0
000906958 0247_ $$2doi$$a10.1002/adfm.202201455
000906958 0247_ $$2ISSN$$a1057-9257
000906958 0247_ $$2ISSN$$a1099-0712
000906958 0247_ $$2ISSN$$a1616-301X
000906958 0247_ $$2ISSN$$a1616-3028
000906958 0247_ $$2Handle$$a2128/31258
000906958 0247_ $$2altmetric$$aaltmetric:125158986
000906958 0247_ $$2WOS$$aWOS:000771566700001
000906958 037__ $$aFZJ-2022-01776
000906958 082__ $$a530
000906958 1001_ $$0P:(DE-HGF)0$$aAdhitama, Egy$$b0
000906958 245__ $$aPre‐Lithiation of Silicon Anodes by Thermal Evaporation of Lithium for Boosting the Energy Density of Lithium Ion Cells
000906958 260__ $$aWeinheim$$bWiley-VCH$$c2022
000906958 3367_ $$2DRIVER$$aarticle
000906958 3367_ $$2DataCite$$aOutput Types/Journal article
000906958 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654258390_26727
000906958 3367_ $$2BibTeX$$aARTICLE
000906958 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906958 3367_ $$00$$2EndNote$$aJournal Article
000906958 520__ $$aSilicon (Si) is one of the most promising anode candidates to further push the energy density of lithium ion batteries. However, its practical usage is still hindered by parasitic side reactions including electrolyte decomposition and continuous breakage and (re-)formation of the solid electrolyte interphase (SEI), leading to consumption of active lithium. Pre-lithiation is considered a highly appealing technique to compensate for active lithium losses. A critical parameter for a successful pre-lithiation strategy by means of Li metal is to achieve lithiation of the active material/composite anode at the most uniform lateral and in-depth distribution possible. Despite extensive exploration of various pre-lithiation techniques, controlling the lithium amount precisely while keeping a homogeneous lithium distribution remains challenging. Here, the thermal evaporation of Li metal as a novel pre-lithiation technique for pure Si anodes that allows both, that is, precise control of the degree of pre-lithiation and a homogeneous Li deposition at the surface is reported. Li nucleation, mechanical cracking, and the ongoing phase changes are thoroughly evaluated. The terms dry-state and wet-state pre-lithiation (without/with electrolyte) are revisited. Finally, a series of electrochemical methods are performed to allow a direct correlation of pre-SEI formation with the electrochemical performance of pre-lithiated Si.
000906958 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000906958 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906958 7001_ $$0P:(DE-HGF)0$$aDias Brandao, Frederico$$b1
000906958 7001_ $$0P:(DE-HGF)0$$aDienwiebel, Iris$$b2
000906958 7001_ $$0P:(DE-HGF)0$$aBela, Marlena M.$$b3
000906958 7001_ $$0P:(DE-Juel1)186674$$aJaved, Atif$$b4$$ufzj
000906958 7001_ $$0P:(DE-HGF)0$$aHaneke, Lukas$$b5
000906958 7001_ $$0P:(DE-HGF)0$$aStan, Marian C.$$b6
000906958 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b7$$ufzj
000906958 7001_ $$00000-0001-7053-3986$$aGomez-Martin, Aurora$$b8$$eCorresponding author
000906958 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b9$$eCorresponding author
000906958 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202201455$$gp. 2201455 -$$n22$$p2201455 -$$tAdvanced functional materials$$v32$$x1057-9257$$y2022
000906958 8564_ $$uhttps://juser.fz-juelich.de/record/906958/files/Adv%20Funct%20Materials%20-%202022%20-%20Adhitama%20-%20Pre%E2%80%90Lithiation%20of%20Silicon%20Anodes%20by%20Thermal%20Evaporation%20of%20Lithium%20for%20Boosting%20the.pdf$$yOpenAccess
000906958 909CO $$ooai:juser.fz-juelich.de:906958$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906958 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186674$$aForschungszentrum Jülich$$b4$$kFZJ
000906958 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ
000906958 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000906958 9141_ $$y2022
000906958 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000906958 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28
000906958 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906958 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000906958 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000906958 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906958 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000906958 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000906958 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000906958 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-15
000906958 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000906958 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000906958 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2021$$d2022-11-15
000906958 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-15
000906958 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-15
000906958 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2021$$d2022-11-15
000906958 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000906958 9801_ $$aFullTexts
000906958 980__ $$ajournal
000906958 980__ $$aVDB
000906958 980__ $$aUNRESTRICTED
000906958 980__ $$aI:(DE-Juel1)IEK-12-20141217
000906958 981__ $$aI:(DE-Juel1)IMD-4-20141217