000906960 001__ 906960
000906960 005__ 20240712113124.0
000906960 0247_ $$2doi$$a10.1149/1945-7111/ac5c08
000906960 0247_ $$2ISSN$$a0013-4651
000906960 0247_ $$2ISSN$$a0096-4743
000906960 0247_ $$2ISSN$$a0096-4786
000906960 0247_ $$2ISSN$$a1945-6859
000906960 0247_ $$2ISSN$$a1945-7111
000906960 0247_ $$2ISSN$$a2156-7395
000906960 0247_ $$2Handle$$a2128/30928
000906960 0247_ $$2WOS$$aWOS:000770136300001
000906960 037__ $$aFZJ-2022-01778
000906960 082__ $$a660
000906960 1001_ $$0P:(DE-HGF)0$$aHeidrich, Bastian$$b0
000906960 245__ $$aComparative X-ray Photoelectron Spectroscopy Study of the SEI and CEI in Three Different Lithium Ion Cell Formats
000906960 260__ $$aBristol$$bIOP Publishing$$c2022
000906960 3367_ $$2DRIVER$$aarticle
000906960 3367_ $$2DataCite$$aOutput Types/Journal article
000906960 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648468646_16392
000906960 3367_ $$2BibTeX$$aARTICLE
000906960 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906960 3367_ $$00$$2EndNote$$aJournal Article
000906960 520__ $$aThe solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) of three lithium ion cell formats, i.e., coin, lab-scale pouch and multi-layer pouch, are compared. Half the cells are additionally dried prior to electrolyte filling and cycling. The highest water content per cell, determined by Karl Fischer titration, is found for lab-scale pouch cells due to their disadvantageous ratio of cell housing area to electrode area. The water content influences the performance during electrochemical formation as well as the impedance. This is linked to increasing lithium fluoride concentration, as determined by X-ray photoelectron spectroscopy. For dried cells, this is not the case because there is less conducting salt hydrolysis. The CEI thickness decreases for dried pouch cells, while the organic SEI thickness increases in all cell formats for dried cells. It is concluded that the initial thickness of the porous organic SEI depends on the insulation of the dense inorganic SEI close to the electrode surface. Organic species are more likely to contribute to negative electrode passivation when the extent of conducting salt hydrolysis is low. For coin cells, the presence of atmospheric gases during formation results in thicker SEI and CEI, no matter whether cells are additionally dried.
000906960 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000906960 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906960 7001_ $$0P:(DE-HGF)0$$aPritzlaff, Lars$$b1
000906960 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b2
000906960 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$ufzj
000906960 7001_ $$00000-0001-8892-8978$$aNiehoff, Philip$$b4$$eCorresponding author
000906960 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/ac5c08$$gVol. 169, no. 3, p. 030533 -$$n3$$p030533 -$$tJournal of the Electrochemical Society$$v169$$x0013-4651$$y2022
000906960 8564_ $$uhttps://juser.fz-juelich.de/record/906960/files/Heidrich_2022_J._Electrochem._Soc._169_030533.pdf$$yOpenAccess
000906960 909CO $$ooai:juser.fz-juelich.de:906960$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000906960 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000906960 9141_ $$y2022
000906960 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000906960 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000906960 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906960 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000906960 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-26
000906960 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-26
000906960 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-26
000906960 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-26
000906960 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-26
000906960 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2021$$d2022-11-26
000906960 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-26
000906960 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-26
000906960 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000906960 9801_ $$aFullTexts
000906960 980__ $$ajournal
000906960 980__ $$aVDB
000906960 980__ $$aUNRESTRICTED
000906960 980__ $$aI:(DE-Juel1)IEK-12-20141217
000906960 981__ $$aI:(DE-Juel1)IMD-4-20141217