001     906960
005     20240712113124.0
024 7 _ |a 10.1149/1945-7111/ac5c08
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-6859
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2156-7395
|2 ISSN
024 7 _ |a 2128/30928
|2 Handle
024 7 _ |a WOS:000770136300001
|2 WOS
037 _ _ |a FZJ-2022-01778
082 _ _ |a 660
100 1 _ |a Heidrich, Bastian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Comparative X-ray Photoelectron Spectroscopy Study of the SEI and CEI in Three Different Lithium Ion Cell Formats
260 _ _ |a Bristol
|c 2022
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648468646_16392
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) of three lithium ion cell formats, i.e., coin, lab-scale pouch and multi-layer pouch, are compared. Half the cells are additionally dried prior to electrolyte filling and cycling. The highest water content per cell, determined by Karl Fischer titration, is found for lab-scale pouch cells due to their disadvantageous ratio of cell housing area to electrode area. The water content influences the performance during electrochemical formation as well as the impedance. This is linked to increasing lithium fluoride concentration, as determined by X-ray photoelectron spectroscopy. For dried cells, this is not the case because there is less conducting salt hydrolysis. The CEI thickness decreases for dried pouch cells, while the organic SEI thickness increases in all cell formats for dried cells. It is concluded that the initial thickness of the porous organic SEI depends on the insulation of the dense inorganic SEI close to the electrode surface. Organic species are more likely to contribute to negative electrode passivation when the extent of conducting salt hydrolysis is low. For coin cells, the presence of atmospheric gases during formation results in thicker SEI and CEI, no matter whether cells are additionally dried.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pritzlaff, Lars
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Börner, Markus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 3
|u fzj
700 1 _ |a Niehoff, Philip
|0 0000-0001-8892-8978
|b 4
|e Corresponding author
773 _ _ |a 10.1149/1945-7111/ac5c08
|g Vol. 169, no. 3, p. 030533 -
|0 PERI:(DE-600)2002179-3
|n 3
|p 030533 -
|t Journal of the Electrochemical Society
|v 169
|y 2022
|x 0013-4651
856 4 _ |u https://juser.fz-juelich.de/record/906960/files/Heidrich_2022_J._Electrochem._Soc._169_030533.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906960
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2021
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-26
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21