000906974 001__ 906974
000906974 005__ 20240709081955.0
000906974 0247_ $$2doi$$a10.1016/j.electacta.2022.140181
000906974 0247_ $$2ISSN$$a0013-4686
000906974 0247_ $$2ISSN$$a1873-3859
000906974 0247_ $$2Handle$$a2128/30957
000906974 0247_ $$2altmetric$$aaltmetric:124500936
000906974 0247_ $$2WOS$$aWOS:000872022700001
000906974 037__ $$aFZJ-2022-01787
000906974 082__ $$a540
000906974 1001_ $$0P:(DE-Juel1)174235$$aAtik, Jaschar$$b0
000906974 245__ $$aLocal superconcentration via solvating ionic liquid electrolytes for safe 4.3V lithium metal batteries
000906974 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2022
000906974 3367_ $$2DRIVER$$aarticle
000906974 3367_ $$2DataCite$$aOutput Types/Journal article
000906974 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648561687_1458
000906974 3367_ $$2BibTeX$$aARTICLE
000906974 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906974 3367_ $$00$$2EndNote$$aJournal Article
000906974 520__ $$aA novel solvating ionic liquid (SIL), N-methyl N-oligo(ethylene oxide)pyrrolidinium bis(fluorosulfonyl)imide (Pyr1,(2O)7FSI) was synthesized and used to prepare binary and ternary liquid electrolytes with LiFSI as conducting salt and 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (TTE) as a non-solvating low viscosity co-solvent. Thereby, the binary superconcentrated liquid electrolyte (i.e., 6.8 m LiFSI in Pyr1,(2O)7FSI) reaches a Li+ ion transference number of 0.25 ± 0.02. To enhance the ionic conductivity and separator wetting, the binary electrolyte was mixed with TTE leading to local superconcentrated Li+ ion solvation structures as shown by Raman measurements. These ternary electrolytes exhibit improved wettability, excellent safety and allow cycling in NMC622||Li cells and Cu||Li cells with Coulombic efficiencies of up to 99.9% and 98.5%, respectively, and a capacity retention of 84% for NMC622||Li cells with the electrolyte 2.0 m LiFSI, Pyr1,(2O)7FSI:TTE (1:1 wt%) after 100 cycles vs. a cell failure after 35 cycles for the state-of-the-art containing IL N‑butyl‑N-methylpyrrolidinium FSI electrolyte.
000906974 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000906974 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906974 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b1$$ufzj
000906974 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie$$b2$$eCorresponding author
000906974 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2022.140181$$gVol. 415, p. 140181 -$$p140181 -$$tElectrochimica acta$$v415$$x0013-4686$$y2022
000906974 8564_ $$uhttps://juser.fz-juelich.de/record/906974/files/GetFileAttachment_Paillard.pdf$$yPublished on 2022-03-10. Available in OpenAccess from 2024-03-10.
000906974 909CO $$ooai:juser.fz-juelich.de:906974$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174235$$aForschungszentrum Jülich$$b0$$kFZJ
000906974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b1$$kFZJ
000906974 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000906974 9141_ $$y2022
000906974 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000906974 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000906974 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000906974 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000906974 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-15$$wger
000906974 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2021$$d2022-11-15
000906974 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000906974 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000906974 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-15
000906974 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-15
000906974 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000906974 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000906974 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000906974 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELECTROCHIM ACTA : 2021$$d2022-11-15
000906974 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000906974 9801_ $$aFullTexts
000906974 980__ $$ajournal
000906974 980__ $$aVDB
000906974 980__ $$aUNRESTRICTED
000906974 980__ $$aI:(DE-Juel1)IEK-12-20141217
000906974 981__ $$aI:(DE-Juel1)IMD-4-20141217