000906976 001__ 906976
000906976 005__ 20240712100912.0
000906976 0247_ $$2doi$$a10.5194/acp-22-4019-2022
000906976 0247_ $$2ISSN$$a1680-7316
000906976 0247_ $$2ISSN$$a1680-7324
000906976 0247_ $$2Handle$$a2128/30961
000906976 0247_ $$2altmetric$$aaltmetric:125496688
000906976 0247_ $$2WOS$$aWOS:000776518900001
000906976 037__ $$aFZJ-2022-01789
000906976 041__ $$aEnglish
000906976 082__ $$a550
000906976 1001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b0$$eCorresponding author
000906976 245__ $$aAn assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses
000906976 260__ $$aKatlenburg-Lindau$$bEGU$$c2022
000906976 3367_ $$2DRIVER$$aarticle
000906976 3367_ $$2DataCite$$aOutput Types/Journal article
000906976 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680497412_2217
000906976 3367_ $$2BibTeX$$aARTICLE
000906976 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000906976 3367_ $$00$$2EndNote$$aJournal Article
000906976 520__ $$aThe tropopause layer plays a key role in manifold processes in atmospheric chemistry and physics. Here we compare the representation and characteristics of the lapse rate tropopause according to the definition of the World Meteorological Organization (WMO) as estimated from European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Our study is based on 10-year records (2009 to 2018) of ECMWF's state-of-the-art reanalysis ERA5 and its predecessor ERA-Interim. The intercomparison reveals notable differences between ERA5 and ERA-Interim tropopause data, in particular on small spatiotemporal scales. The monthly mean differences of ERA5 minus ERA-Interim tropopause heights vary between −300 m at the transition from the tropics to the extratropics (near 30∘ S and 30∘ N) to 150 m around the Equator. Mean tropopause temperatures are mostly lower in ERA5 than in ERA-Interim, with a maximum difference of up to −1.5 K in the tropics. Monthly standard deviations of tropopause heights of ERA5 are up to 350 m or 60 % larger than for ERA-Interim. Monthly standard deviations of tropopause temperatures of ERA5 exceed those of ERA-Interim by up to 1.5 K or 30 %. The occurrence frequencies of double-tropopause events in ERA5 exceed those of ERA-Interim by up to 25 percentage points at middle latitudes. We attribute the differences between the ERA5 and ERA-Interim tropopause data and the larger, more realistic variability of ERA5 to improved spatiotemporal resolution and better representation of geophysical processes in the forecast model as well as improvements in the data assimilation scheme and the utilization of additional observations in ERA5. The improved spatiotemporal resolution of ERA5 allows for a better representation of mesoscale features, in particular of gravity waves, which affect the temperature profiles in the upper troposphere and lower stratosphere (UTLS) and thus the tropopause height estimates. We evaluated the quality of the ERA5 and ERA-Interim reanalysis tropopause data by comparisons with COSMIC and MetOp Global Positioning System (GPS) satellite observations as well as high-resolution radiosonde profiles. The comparison indicates an uncertainty of the first tropopause for ERA5 (ERA-Interim) of about ±150 to ±200 m (±250 m) based on radiosonde data and ±120 to ±150 m (±170 to ±200 m) based on the coarser-resolution GPS data at different latitudes. Consequently, ERA5 will provide more accurate information than ERA-Interim for future tropopause-related studies.
000906976 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000906976 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x1
000906976 536__ $$0G:(GEPRIS)410579391$$aDFG project 410579391 - Transportwege für Aerosol und Spurengase im Asiatischen Monsun in der oberen Troposphäre und unteren Stratosphäre $$c410579391$$x2
000906976 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000906976 7001_ $$0P:(DE-Juel1)129154$$aSpang, Reinhold$$b1
000906976 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-22-4019-2022$$gVol. 22, no. 6, p. 4019 - 4046$$n6$$p4019 - 4046$$tAtmospheric chemistry and physics$$v22$$x1680-7316$$y2022
000906976 8564_ $$uhttps://juser.fz-juelich.de/record/906976/files/acp-22-4019-2022.pdf$$yOpenAccess
000906976 909CO $$ooai:juser.fz-juelich.de:906976$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000906976 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b0$$kFZJ
000906976 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich$$b1$$kFZJ
000906976 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000906976 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x1
000906976 9141_ $$y2022
000906976 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000906976 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000906976 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000906976 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000906976 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906976 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000906976 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000906976 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000906976 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-18T05:37:09Z
000906976 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-18T05:37:09Z
000906976 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2019-12-18T05:37:09Z
000906976 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000906976 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000906976 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-19
000906976 920__ $$lyes
000906976 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000906976 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000906976 9201_ $$0I:(DE-Juel1)CASA-20230315$$kCASA$$lCenter for Advanced Simulation and Analytics$$x2
000906976 9801_ $$aFullTexts
000906976 980__ $$ajournal
000906976 980__ $$aVDB
000906976 980__ $$aI:(DE-Juel1)JSC-20090406
000906976 980__ $$aI:(DE-Juel1)IEK-7-20101013
000906976 980__ $$aI:(DE-Juel1)CASA-20230315
000906976 980__ $$aUNRESTRICTED
000906976 981__ $$aI:(DE-Juel1)ICE-4-20101013