000906990 001__ 906990
000906990 005__ 20250129094350.0
000906990 0247_ $$2Handle$$a2128/30951
000906990 037__ $$aFZJ-2022-01802
000906990 1001_ $$0P:(DE-Juel1)130928$$aRücker, U.$$b0$$ufzj
000906990 1112_ $$aInternational Symposium UCANS9$$conline by RIKEN, Japan$$d2022-03-28 - 2022-03-31$$gUCANS9$$wonline event
000906990 245__ $$aOptimized thermal moderators for Compact Accelerator-driven Neutron Sources
000906990 260__ $$c2022
000906990 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1648558979_1497
000906990 3367_ $$033$$2EndNote$$aConference Paper
000906990 3367_ $$2BibTeX$$aINPROCEEDINGS
000906990 3367_ $$2DRIVER$$aconferenceObject
000906990 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000906990 3367_ $$2ORCID$$aOTHER
000906990 520__ $$aCompact Accelerator-driven Neutron Sources (CANS) have the advantage (compared to researchreactors or spallation sources) that the primary neutrons are emitted from a volume well below 1 dm3.The thermal moderator is used to change the energy of the primary neutrons (typically in the MeVrange) down to the 100 meV range, where they are useful for the structural investigation of matter.This moderation process takes place by multiple scattering events with the nuclei of the moderatormaterial(s). To be able to extract neutron beams efficiently from the thermal moderator, it isimportant not to dilute the primary neutron cloud too much, but to keep it confined and dense forthe time of the neutron pulse length desired.The different materials useful for building a moderator-reflector assembly around a target of a CANSdiffer in their absorption probability, scattering power, and energy transfer during a single neutronscattering event. The scattering leads to energy loss and confinement (by a randomized flight directionof the neutron after the scattering), while absorption and diffusion out of the moderator -reflectorregion are the main mechanisms of intensity decay. Some typical materials are e.g. light water orpolyethylene as hydrogen rich materials that lead to fast energy transfer (complete thermalizationwithin 7 μs) and a good confinement of the thermal neutron cloud (about 8 cm FWHM), but thethermal neutrons decay with a time constant below 200 μs due to the nuclear absorption by thehydrogen nuclei. Beryllium or lead show a much weaker scattering probability and a lower energytransfer, which lead to slower moderation, a larger size of the thermal neutron cloud, but a longerlifetime due to an absorption probability that is several orders of magnitude lower.We try to optimize the geometry and the combination of materials in a way to be able to provide theextraction of several neutron beams from a single moderator-reflector assembly with a suitable pulsetime structure either for thermal neutron instruments or for feeding cold neutron sources insertedinto the thermal moderator assembly.
000906990 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000906990 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000906990 7001_ $$0P:(DE-Juel1)131055$$aZakalek, P.$$b1$$ufzj
000906990 7001_ $$0P:(DE-Juel1)7897$$aLi, Jingjing$$b2$$ufzj
000906990 7001_ $$0P:(DE-Juel1)131018$$aVoigt, J.$$b3$$ufzj
000906990 7001_ $$0P:(DE-Juel1)190948$$aShabani, D.$$b4$$ufzj
000906990 7001_ $$0P:(DE-HGF)0$$aBöhm, S.$$b5
000906990 7001_ $$0P:(DE-Juel1)130382$$aMauerhofer, E.$$b6$$ufzj
000906990 7001_ $$0P:(DE-Juel1)168124$$aGutberlet, T.$$b7$$ufzj
000906990 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Th.$$b8$$ufzj
000906990 8564_ $$uhttps://juser.fz-juelich.de/record/906990/files/abstract%20book_UCANS9_76.pdf$$yOpenAccess
000906990 909CO $$ooai:juser.fz-juelich.de:906990$$pdriver$$pVDB$$popen_access$$popenaire
000906990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b0$$kFZJ
000906990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131055$$aForschungszentrum Jülich$$b1$$kFZJ
000906990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7897$$aForschungszentrum Jülich$$b2$$kFZJ
000906990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131018$$aForschungszentrum Jülich$$b3$$kFZJ
000906990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190948$$aForschungszentrum Jülich$$b4$$kFZJ
000906990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130382$$aForschungszentrum Jülich$$b6$$kFZJ
000906990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168124$$aForschungszentrum Jülich$$b7$$kFZJ
000906990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b8$$kFZJ
000906990 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000906990 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000906990 9141_ $$y2022
000906990 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000906990 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000906990 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000906990 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000906990 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x3
000906990 9801_ $$aFullTexts
000906990 980__ $$aabstract
000906990 980__ $$aVDB
000906990 980__ $$aUNRESTRICTED
000906990 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000906990 980__ $$aI:(DE-Juel1)PGI-4-20110106
000906990 980__ $$aI:(DE-82)080009_20140620
000906990 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
000906990 981__ $$aI:(DE-Juel1)JCNS-2-20110106