001     906990
005     20250129094350.0
024 7 _ |a 2128/30951
|2 Handle
037 _ _ |a FZJ-2022-01802
100 1 _ |a Rücker, U.
|0 P:(DE-Juel1)130928
|b 0
|u fzj
111 2 _ |a International Symposium UCANS9
|g UCANS9
|c online by RIKEN, Japan
|d 2022-03-28 - 2022-03-31
|w online event
245 _ _ |a Optimized thermal moderators for Compact Accelerator-driven Neutron Sources
260 _ _ |c 2022
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1648558979_1497
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Compact Accelerator-driven Neutron Sources (CANS) have the advantage (compared to researchreactors or spallation sources) that the primary neutrons are emitted from a volume well below 1 dm3.The thermal moderator is used to change the energy of the primary neutrons (typically in the MeVrange) down to the 100 meV range, where they are useful for the structural investigation of matter.This moderation process takes place by multiple scattering events with the nuclei of the moderatormaterial(s). To be able to extract neutron beams efficiently from the thermal moderator, it isimportant not to dilute the primary neutron cloud too much, but to keep it confined and dense forthe time of the neutron pulse length desired.The different materials useful for building a moderator-reflector assembly around a target of a CANSdiffer in their absorption probability, scattering power, and energy transfer during a single neutronscattering event. The scattering leads to energy loss and confinement (by a randomized flight directionof the neutron after the scattering), while absorption and diffusion out of the moderator -reflectorregion are the main mechanisms of intensity decay. Some typical materials are e.g. light water orpolyethylene as hydrogen rich materials that lead to fast energy transfer (complete thermalizationwithin 7 μs) and a good confinement of the thermal neutron cloud (about 8 cm FWHM), but thethermal neutrons decay with a time constant below 200 μs due to the nuclear absorption by thehydrogen nuclei. Beryllium or lead show a much weaker scattering probability and a lower energytransfer, which lead to slower moderation, a larger size of the thermal neutron cloud, but a longerlifetime due to an absorption probability that is several orders of magnitude lower.We try to optimize the geometry and the combination of materials in a way to be able to provide theextraction of several neutron beams from a single moderator-reflector assembly with a suitable pulsetime structure either for thermal neutron instruments or for feeding cold neutron sources insertedinto the thermal moderator assembly.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a Zakalek, P.
|0 P:(DE-Juel1)131055
|b 1
|u fzj
700 1 _ |a Li, Jingjing
|0 P:(DE-Juel1)7897
|b 2
|u fzj
700 1 _ |a Voigt, J.
|0 P:(DE-Juel1)131018
|b 3
|u fzj
700 1 _ |a Shabani, D.
|0 P:(DE-Juel1)190948
|b 4
|u fzj
700 1 _ |a Böhm, S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mauerhofer, E.
|0 P:(DE-Juel1)130382
|b 6
|u fzj
700 1 _ |a Gutberlet, T.
|0 P:(DE-Juel1)168124
|b 7
|u fzj
700 1 _ |a Brückel, Th.
|0 P:(DE-Juel1)130572
|b 8
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/906990/files/abstract%20book_UCANS9_76.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906990
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131055
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)7897
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131018
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)190948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130382
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)168124
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130572
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-HBS-20180709
|k JCNS-HBS
|l High Brilliance Source
|x 3
980 1 _ |a FullTexts
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)JCNS-HBS-20180709
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21