001     906993
005     20230123110610.0
024 7 _ |a 10.1016/j.rse.2022.112984
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a 2128/31001
|2 Handle
024 7 _ |a WOS:000798668300001
|2 WOS
037 _ _ |a FZJ-2022-01805
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Buman, Bastian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Towards consistent assessments of in situ radiometric measurements for the validation of fluorescence satellite missions
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1649252553_16453
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The upcoming Fluorescence Explorer (FLEX) satellite mission aims to provide high quality radiometric measurementsfor subsequent retrieval of sun-induced chlorophyll fluorescence (SIF). The combination of SIF withother observations stemming from the FLEX/Sentinel-3 tandem mission holds the potential to assess complexecosystem processes. The calibration and validation (cal/val) of these radiometric measurements and derivedproducts are central but challenging components of the mission. This contribution outlines strategies for theassessment of in situ radiometric measurements and retrieved SIF. We demonstrate how in situ spectrometermeasurements can be analysed in terms of radiometric, spectral and spatial uncertainties. The analysis of morethan 200 k spectra yields an average bias between two radiometric measurements by two individual spectrometersof 8%, with a larger variability in measurements of downwelling radiance (25%) compared to upwellingradiance (6%). Spectral shifts in the spectrometer relevant for SIF retrievals are consistently below 1spectral pixel (up to 0.75). Found spectral shifts appear to be mostly dependent on temperature (as measured bya temperature probe in the instrument). Retrieved SIF shows a low variability of 1.8% compared with a noisereduced SIF estimate based on APAR. A combination of airborne imaging and in situ non-imaging fluorescencespectroscopy highlights the importance of a homogenous sampling surface and holds the potential to furtheruncover SIF retrieval issues as here shown for early evening acquisitions. Our experiments clearly indicate theneed for careful site selection, measurement protocols, as well as the need for harmonized processing. This workthus contributes to guiding cal/val activities for the upcoming FLEX mission.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hueni, Andreas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Colombo, Roberto
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Cogliati, Sergio
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Celesti, Marco
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Julitta, Tommaso
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Burkart, Andreas
|0 P:(DE-Juel1)145906
|b 6
700 1 _ |a Siegmann, Bastian
|0 P:(DE-Juel1)172711
|b 7
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 8
700 1 _ |a Drusch, Matthias
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Damm, Alexander
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1016/j.rse.2022.112984
|g Vol. 274, p. 112984 -
|0 PERI:(DE-600)1498713-2
|p 112984 -
|t Remote sensing of environment
|v 274
|y 2022
|x 0034-4257
856 4 _ |u https://juser.fz-juelich.de/record/906993/files/1-s2.0-S0034425722000980-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:906993
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b REMOTE SENS ENVIRON : 2021
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21