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Abstract

Numbers of neurons and their spatial variation are fundamental organizational fea-

tures of the brain. Despite the large corpus of data available in the literature, the

statistical distributions of neuron densities within and across brain areas remain

largely uncharacterized. Here, we show that neuron densities are compatible with

a lognormal distribution across cortical areas in several mammalian species. We

find that this also holds true for uniformly sampled regions across cortex as well as

within cortical areas. Our findings uncover a new organizational principle of cor-

tical cytoarchitecture. The ubiquitous lognormal distribution of neuron densities

adds to a long list of lognormal variables in the brain.
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Introduction

Neurons are not uniformly distributed across the cerebral cortex; their density varies strongly

across areas and layers [1]. The neuron density directly affects short-range as well as long-range

neuronal connectivity [2, 3]. Elucidating the distribution of neuron densities across the brain

therefore provides insight into its connectivity structure and, ultimately, cognitive function.

Additionally, statistical distributions are essential for the construction of computational models,

which rely on predictive relationships and organizational principles where the experimental data

are missing [4, 5]. Previous quantitative studies have provided reliable estimates for cell den-

sities across the cerebral cortex of rodents [6, 7, 8], non-human primates [8, 9, 10, 11, 12, 13],

large carnivores [14], and humans [15, 1]. However, to the best of our knowledge, the univari-

ate distribution of neuron densities across and within cortical areas has not yet been statistically

characterized. Instead, most studies focus on qualitative and quantitative comparisons across

species, areas, or cortical layers. Capturing the entire distribution is necessary because long-

tailed, highly skewed distributions are prevalent in the brain [16] and invalidate the intuition—

guided by the central limit theorem—that the vast majority of values are in a small region of a

few standard deviations around the mean.

Here, we for the first time characterize the distribution of neuron densities ρ across mam-

malian cerebral cortex. Based on the sample histograms (Figure 1) we hypothesize that ρ

follows a lognormal distribution, similar to many other neuroanatomical and physiological

variables such as synaptic strengths, axonal widths, and cortico-cortical connection densities

[16, 17, 18]. Using neuron density data from mouse (Mus musculus), marmoset (Callithrix jac-

chus), macaque (Macaca mulatta), human (Homo sapiens), galago (Otolemur garnettii), owl

monkey (Aotus nancymaae), and baboon (Papio cynocephalus anubis) we confirm this hypoth-

esis for the given species (see Cell density data for a detailed description of the data). Going
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beyond the distribution across cortical areas, we furthermore show that neuron densities within

most areas of marmoset cortex are also compatible with a lognormal distribution. Moreover,

we show that the lognormal distribution can emerge during neurogenesis from a simple cell

division model with variability. Finally, we compare with several other distributions and find

that none outperform the lognormal distribution as a model of the data within and across cortex.

Results

To test for lognormality, we take the natural logarithm, ln(ρ), which converts lognormally dis-

tributed samples into normally distributed samples (Figure 1B). We then test for normality of

ln(ρ) using the Shapiro-Wilk (SW) test, the most powerful among a number of commonly

applied normality tests [19]. Large outliers (|z-scored ln(ρ)| ≥ 3; marked with a red cross in

Figure 1C) were excluded from the normality test. The removed outliers are area V1 in macaque

and marmoset, which have densities far outside the range for all other areas in both species, and

area APir in marmoset, which has a noticeably distinct cytoarchitecture with respect to the rest

of the cerebral cortex [9]. We denote different data sets for the same species with subscript

indices (see Cell density data). The SW test concludes that the normality hypothesis of ln(ρ)

cannot be rejected for mouse, marmoset, macaque1, human, galago1, owl monkey, and baboon

(see Figure 1B). For the data sets macaque2 and galago2 the normality hypothesis is rejected

(p < 0.05); however, in these data sets, the densities were sampled neither uniformly nor based

on a cytoarchitectonic parcellation. The normality hypothesis for the distribution across cy-

toarchitectonic areas is further supported by Figure 1C, which shows that the relation between

theoretical quantiles and ordered samples is almost perfectly linear except for macaque2 and

galago2. Next, we test the z-scored ln(ρ) from the different species and data sets against each

other and find that they are pairwise statistically indistinguishable (α = 0.05 level; two-sample

two-sided Kolmogorov-Smirnov test, see Figure S1 for full test results).
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Additionally, we control for cell types in the distributions of the mouse, galago1, owl mon-

key, and baboon data. In the mouse data, different types of neurons and glia were labeled with

specific genetic markers and their respective densities were reported separately for all cell types

[7]. In the galago1, owl monkey, and baboon data sets, the total numbers of cells and neurons

were reported separately [11]. We show that all subtypes of neurons in the mouse are com-

patible with a lognormal distribution (Figure S2; SW test on ln(ρ), p > 0.05) while glia are

not—with the notable exception of oligodendrocytes. When neurons and glia are pooled to-

gether (Figure S2C,D), the distribution of ln(ρ) still passes the SW normality test, likely due to

the distribution being dominated by the neurons. Similar observations are made in the baboon

data, where the glia do not pass the lognormality test, but the neurons do. In the cases of galago1

and owl monkey both the neurons and glia pass the lognormality test (Figure S2), which may,

however, be partly due to the small number of density samples (N=12 in both cases). Thus, the

mouse and baboon data—with large samples sizes (N=42 and N=142, respectively)—suggest

that it is the neuron densities that follow a lognormal distribution but not necessarily the glia

densities.

Furthermore, we also perform a control test on the different types of staining—Nissl and

NeuN—using the macaque1 data. The staining methods differ in their treatment of glia: NeuN

tends to label neuronal cell bodies only while Nissl indiscriminately labels both neurons and

glia. We show that regardless of staining type the cell densities pass the lognormality test

(Figure S3; SW test on ln(ρ) with p > 0.05), suggesting that counting some glia in the cell

densities does not confound our analysis of the macaque1 data.

Taken together, the normality test, the quantiles plots, the pairwise tests, the cell type com-

parison, and the staining method comparison provide compelling evidence that the logarith-

mized neuron densities are normally distributed across cytoarchitectonic areas. This also holds

for uniformly sampled neuron densities (baboon) but not for a sampling that is neither uniform
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nor based on a cytoarchitectonic parcellation (macaque2, galago2). Thus, the neuron densi-

ties are consistent with a lognormal distribution across the different cortical areas, as long as

sampling is not irregular.

To investigate whether the lognormal distribution holds within cortical areas, we lever-

age numerical estimates of neuron density in marmoset [9]. Neurons were counted within

150 × 150 µm counting frames for four strips per cortical area, all originating from the same

subject. The neuron densities within the counting frames ρs are the within-area samples; their

sample distributions in three representative areas (MIP, V2, and V3; Figure 2A) again suggest a

lognormal distribution. As before, we test for lognormality by testing ln(ρs) for normality with

the SW-test (for full test results see Table S2). At significance level α = 0.05, the normality

hypothesis is not rejected for 86 out of 116 areas; whereas at α = 0.001, this is the case for

112 out of 116 areas (Figure 2B,C). Thus, regardless of the precise significance threshold, the

lognormality hypothesis cannot be rejected within most cortical areas in the marmoset cortex.

This finding raises the question how the intricate process of neurogenesis [20] culminates in

lognormally distributed neuron densities in almost all areas. A simple model shows that there

is no need for a specific regulatory mechanism: assuming that the proliferation of the neural

progenitor cells is governed by a noisy rate

λ(t) = µ(t) + ξ(t), (1)

where µ(t) denotes the mean rate and ξ(t) is a zero-mean Gaussian process, the resulting popu-

lation of progenitor cells, and eventually neurons, is lognormally distributed (see Model of pro-

genitor cell division with variability). Thus, the lognormal neuron density distribution within

areas could be a hallmark of a cell division process with variability. The model furthermore

predicts that the mean and variance of ln(ρ) increase with proliferation time. Since the prolif-

eration time varies up to twofold between areas [20], mean and variance of ln(ρ) are correlated
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across areas according to the model—indeed, they are significantly correlated in the marmoset

data (Pearson r = 0.32, p < 10−3, Figure S4).

To complement the statistical hypothesis tests on the logarithmic densities, we compared

the lognormal model with six other statistical distributions based on the relative likelihood (see

Statistical model comparison). We included statistical distributions with support in R+ since

neuron densities cannot be negative: lognormal, truncated normal, inverse normal, gamma,

inverse gamma, Lévy, and Weibull. Of those distributions the lognormal, inverse normal, and

inverse gamma stand out as the distributions with the highest relative likelihoods, both across

the entire cortex and within cortical areas (Figure S5A, Figure S6A). A visual inspection of

the fitted distribution reveals that the lognormal, inverse normal, and inverse gamma produce

virtually indistinguishable probability densities (Figure S5B, Figure S6C); indeed, the relative

likelihoods of the three models are above 0.05 in all cases. This suggests that the data could

theoretically be distributed according to either the lognormal, inverse normal, or inverse gamma

distribution. However, out of these, the lognormal distribution could arise from a simple model

of cell division (equation (1))—while no interpretable mechanisms leading to inverse normal

or inverse gamma distributions are known in this context. Thus, the similar likelihood and a

simple biophysical explanation together argue for a lognormal rather than an inverse normal or

inverse gamma distribution of neuron densities.

Discussion

In conclusion, we show that neuron densities are compatible with a lognormal distribution

across cortical areas in multiple mammalian cortices and within most cortical areas of the mar-

moset, uncovering a previously unexplored organizational principle of cerebral cortex. Further-

more, we propose a simple model, based on a cell division process of the progenitor cells with

variability, that accounts for the emerging lognormal distributions within areas. Lastly, we show
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that none of an extensive list of statistical models outperform the lognormal distribution. Our

results are in agreement with the observation that surprisingly many characteristics of the brain

follow lognormal distributions [16]. Moreover, this analysis highlights the importance of char-

acterizing the statistical distributions of brain data because simple summary statistics—such as

the mean or standard deviation—lack nuance and are not necessarily a good representation of

the underlying distribution.

The distributions of neuron and cell densities in general depend on the underlying spatial

sampling. We found that neuron densities follow a lognormal distribution within cytoarchitec-

tonically defined areas, across such areas, and when averaged within small parcels uniformly

sampled across cortex, but not when sampled in a highly non-uniform manner not following

cytoarchitectonic boundaries. The observation of lognormality both within and across cytoar-

chitectonic areas as well as across small uniformly sized parcels suggests an interesting topic for

further research: uncovering whether the neuron densities obey an invariance principle across

scales.

In principle, cortex-wide organizational structures might be by-products of development or

evolution that serve no computational function [21]—but the fact that we observe the same

organizational principle for several species and across most cortical areas suggests that the

lognormal distribution serves some purpose. Heterogeneous neuron densities could assist com-

putation through their association with heterogeneity in other properties such as connectivity

and neuronal time constants [4, 22]; indeed, such heterogeneity is known to be a valuable asset

for neural computation [23, 24]. Alternatively, localized concentration of neurons in certain

areas and regions could also serve a metabolic purpose [25], because centralization supports

more efficient energy usage. This is particularly relevant since approximately half of the brain’s

energy consumption is used to support the communication between neurons [26]. Also from the

perspective of cortical hierarchies it makes sense to have few areas with high neuron densities
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and many areas with lower neuron densities: Low-density areas contain neurons with large den-

dritic trees [27] receiving convergent inputs from many neurons in high-density areas lower in

the hierarchy. The neurons with extensive dendritic trees in higher areas are involved in differ-

ent, area-specific abstractions of the low-level sensory information [28, 29]. There is probably

not a single factor that leads to lognormal neuron densities in the cortex; further research will

be needed to refine our findings and uncover the functional implications.
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Figure 1: Neuron and cell densities ρ follow a lognormal distribution across cortical areas for
multiple species. A Histogram of ρ (bars) and probability density function of a fitted lognormal
distribution (line). B Z-scored ln(ρ) histogram (bars), standard normal distribution (line), and
result of the Shapiro-Wilk normality test. C Probability plot of z-scored ln(ρ). Discarded
outliers marked with a red cross.
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on a flattened representation of the marmoset cortex [9]. C Number of areas with p-values in
the given significance ranges.
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Materials and methods

Cell density data

Estimates of neuron density for the available cortical areas across the mouse (Mus musculus),

marmoset (Callithrix jacchus), macaque (Macaca mulatta), human (Homo sapiens), galago

(Otolemur garnettii), owl monkey (Aotus nancymaae), and baboon (Papio cynocephalus anu-

bis) cerebral cortex were used in this study.

In the cases of mouse, marmoset, macaque1, human, galago1, and owl monkey the data

were sampled from standard cytoarchitectonic parcellations; abbreviated names for all areas are

listed in Table S1. Note that we use subscript indices to distinguish between different data sets

on the same model animal, e.g. macaque1 and macaque2.

Neuron density estimates for the mouse were published in [7], and were measured from

Nissl-body-stained slices, where genetic markers were used to distinguish between cell types.

The data were provided in the Allen Brain Atlas parcellation [30, 31].

Neuron density estimates for the marmoset cortex were published in [9], and were measured

from NeuN-stained slices. The data were provided in the Paxinos parcellation [32]. Neuron

densities within each counting frame used in the original publication [9] (their Figure S1) were

obtained via personal communication with Nafiseh Atapour, Piotr Majka, and Marcello G. Rosa.

The neuron density estimates in the first macaque data set, macaque1, were previously pub-

lished in visual form in [10], and were obtained from both Nissl-body- and NeuN-stained brain

slices. Counts based on Nissl-body staining were scaled according to a linear relationship with

the counts from NeuN staining obtained from selected areas where both types of data were

available [10]. The data follow the M132 parcellation [17] and numerical values were provided

by Sarah F. Beul and Claus C. Hilgetag via personal communication.

Cell density estimates for the human cortex were previously published in [1], and were
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measured from Nissl-body-stained brain slices. The human data therefore most likely reflect

combined neuron and glia densities. The data were provided in the von Economo parcellation

[1].

Cell and neuron density estimates for galago1&2, owl monkey, baboon, and macaque2 were

previously published in [11], and were measured using the isotropic fractionator method. The

data are sampled from common parcellation schemes in galago1 and owl monkey, approxi-

mately equal-size samples in the baboon, and irregular non-uniform samples in macaque2 and

galago2.

Statistical model comparison

In order to assess which model is most compatible with the data, we compared the relative

likelihood of different distributions against each other. We included an extensive list of distri-

butions with support on R+, estimated the distributions’ parameters using maximum likelihood,

and calculated the Akaike Information Criterion (AIC)

AIC = 2k − 2 lnL (2)

where k is the number of estimated parameters of the model and L is the estimated maximum

likelihood. We further compare the models using the relative likelihood (Lr)

Lr = e(AICmin−AICi)/2 (3)

where AICmin is the minimum AIC across all models and AICi is the AIC for the ith model.

Note that the relative likelihood is equal to the relative likelihood if the number of estimated

parameters is the same in both models. The relative likelihood indicates the probability that,

from among the tested models, the ith model most strongly limits the information loss. We take

a significance threshold of α = 0.05 on the relative likelihood to determine whether a model is

significantly worse than the best possible model.
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Model of progenitor cell division with variability

We assume that the proliferation of the neural progenitor cells is governed by a noisy rate

λ(t) = µrate + σrateξ(t), (4)

where µrate denotes the mean rate, ξ(t) is a zero-mean Gaussian white noise process, and σrate

controls the strength of the noise. During proliferation, we assume that the population size of

the progenitor cells grows exponentially with rate λ, i.e., it obeys d
dt
N = λN . Dividing by a

reference volume and inserting equation (4), we obtain a stochastic differential equation (SDE)

for the density of progenitor cells ρ:

d

dt
ρ = (µrate + σrateξ(t))ρ (5)

We here use the Stratonovich interpretation, i.e., we assume that the noise process has a small

but finite correlation time before taking the white-noise limit [33].

Working in the Stratonovich interpretation, we can transform the SDE to d
dt
ln ρ = µrate +

σrateξ(t) with the solution [34]

ln ρ(t) = ln ρ0 + µratet+ σrate

∫ t

0

ξ(s)ds. (6)

Since ξ(t) is Gaussian and equation (6) is linear, ln ρ(t) is Gaussian and hence ρ(t) is log-

normally distributed. The parameters of this lognormal distribution are µ(t) = ⟨ln ρ(t)⟩ and

σ2(t) = ⟨∆(ln ρ(t))2⟩. Using equation (6), ⟨ξ(s)⟩ = 0, and ⟨ξ(s)ξ(s′)⟩ = δ(s − s′), we obtain

[34]

µ(t) = ln ρ0 + µratet and σ2(t) = σ2
ratet. (7)

Thus, the neuron densities resulting from the model of cell division with variability, equation

(5), are lognormally distributed with parameters µ(t) and σ2(t) specified in equation (7). In

particular, equation (7) predicts that both parameters increase with the proliferation time t.
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The model can be generalized while still leading to a lognormal distribution of neuron den-

sities: 1) The mean rate can be time-dependent, µrate = µrate(t). 2) The noise process can be

an arbitrary zero-mean (a non-zero mean can always be incorporated into µrate(t)) Gaussian

process with correlation function Cξ(t, t
′). Both generalizations allow one to incorporate a time

dependence of mean and noise strength during the proliferation. Assuming an absence of corre-

lation between noise and neuron density prior to t = 0, the above steps lead to the generalized

solution

ln ρ(t) = ln ρ0 +

∫ t

0

µrate(s)ds+

∫ t

0

ξ(s)ds. (8)

Here, ln ρ(t) is still a Gaussian process, because it is a linear transformation of the Gaussian

process ξ(t). Due to the marginalization property of Gaussian processes, ln ρ(t) is normally

distributed for any fixed time t with parameters

µ(t) = ln ρ0 +

∫ t

0

µrate(s)ds and σ2(t) =

∫ t

0

∫ t

0

Cξ(s, s
′)dsds′. (9)

Thus, ρ(t) is lognormally distributed with parameters µ(t) and σ2(t) specified in equation (9).

Note that in equation (9), in contrast to equation (7), µ(t) and σ2(t) do not necessarily grow

linearly with time but may exhibit a more intricate temporal dependence. Nonetheless, equation

(9) predicts that µ(t) and σ2(t) are related through the proliferation time.
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Supplementary tables

Table S1: Cortical areas included in this study.

Species Area abbreviations

Mouse FRP, MOp, MOs, SSp, SS-n, SSp-bfd, SSp-ll, SSp-m, SSp-ul, SS-tr, SSs, VISC, AUDd,
AUDp, AUDpo, AUDv, VISal, VISam, VISl, VISp, VISpl, VISpm, ACAd, ACAv,
ACAv, ACAv, ORBl, ORBm, ORBvl, AId, AIp, AIv, RSPagl, RSPd, RSPv, AONd,

AONe, AONl, AONm, AONpv, TTd, TTv

Marmoset A10, A9, A46V, A46D, A8aD, A8b, A8aV, A47L, A47M, A45, A47O, ProM, A11,
A13b, A13a, A13L, A13M, OPAl, OPro, Gu, A32, A32V, A14R, A14C, A25, A24a,
A24b, A24c, A24d, A6DR, A6Vb, A6Va, A8C, A6M, A6DC, A4c, A4ab, PaIM, AI,
PaIL, DI, GI, IPro, TPro, S2PR, A3a, S2PV, A3b, S2I, S2E, A1-2, AuRTL, AuRT,

AuRPB, AuRTM, AuR, AuRM, AuAL, AuA1, AuCM, AuCPB, AuML, AuCL, TPPro,
STR, TE1, TPO, ReI, TE2, PGa-IPa, TPt, TE3, TEO, Pir, APir, Ent, A36, A35, TF, TL,

TH, TLO, TFO, A23c, A23a, A29d, A30, A23b, A29a-c, A23V, ProSt, PF, PE, PFG,
A31, AIP, PG, PEC, VIP, LIP, PGM, V6A, OPt, MIP, MST, FST, V5, V4T, A19M, V3A,

V4, V6, A19DI, V3, V2, V1

Macaque1 2, 5, 9, 10, 11, 12, 13, 14, 23, 25, 32, 24a, 24c, 24d, 46d, 46v, 7A, 7B, 7m, 8B, 8l, 8m,
8r, 9-46d, 9-46v, DP, ENTO, F1, F2, F3, F4, F5, F6, F7, LIP, MT, OPAI, OPRO, PERI,

STPi, TEad, TEav, TEO, TH-TF, V1, V2, V3A, V4

Human FA, FB, FC, FCBm, FD, FD∆, FDt, FE, FF, FG, FH, FJ, FK, FL, FM, FN, LA1, LA2,
LC1, LC2, LC3, LD, LE1, LE2, IA, IB, OA, OB, OC, PA, PB1, PB2, PC, PD, PE, PF,

PG, PH, HA, HB, HC, HD, HE, HF, TA, TB, TC, TD, TE, TF, TG

Galago1 &
Owl Monkey

V1, V2, dV3, vV3, S1, M1, A1, MT, premotor, DL, Remain Ctx, Surr Ctx
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Table S2: Results of the Shapiro-Wilk test for normality of ln(ρs) in marmoset cortical areas.
Values rounded to two significant digits.

Area S p-value Area S p-value Area S p-value
V1 0.97 0.39 AI 0.95 0.0043 TH 0.97 0.66

A10 0.95 0.19 PaIL 0.95 0.33 TLO 0.96 0.18
A9 0.98 0.51 DI 0.97 0.098 TFO 0.97 0.26

A46V 0.98 0.56 GI 0.97 0.67 A23c 0.97 0.36
A46D 0.98 0.49 Ipro 0.97 0.66 A23a 0.99 0.98
A8aD 0.97 0.34 TPro 0.97 0.77 A29d 0.95 0.21

A8b 0.96 0.16 S2PR 0.92 0.006 A30 0.98 0.73
A8aV 0.96 0.17 A3a 0.95 0.04 A23b 0.97 0.45
A47L 0.96 0.052 S2PV 0.93 0.014 A29a-c 0.97 0.70

A47M 0.97 0.30 A3b 0.96 0.20 A23V 0.96 0.15
A45 0.96 0.18 S2I 0.97 0.33 ProSt 0.93 0.018

A47O 0.98 0.70 S2E 0.94 0.0046 PF 0.94 0.00083
ProM 0.97 0.21 Area1-2 0.97 0.37 PE 0.94 0.00065

A11 0.97 0.41 AuRTL 0.97 0.40 PFG 0.92 0.0046
A13b 0.96 0.58 AuRT 0.97 0.031 A31 0.97 0.31
A13a 0.91 0.048 AuRPB 0.98 0.89 AIP 0.96 0.063
A13L 0.97 0.45 AuRTM 0.97 0.73 PG 0.99 0.37

A13M 0.99 0.97 AuR 0.98 0.0093 PEC 0.91 0.0032
OPAl 0.99 0.99 AuRM 0.9 0.017 VIP 0.92 0.0044
OPro 0.98 0.75 AuAL 0.94 0.12 LIP 0.95 0.042

GU 0.95 0.058 AuA1 0.98 0.48 PGM 0.98 0.78
A32 0.97 0.20 AuCM 0.97 0.33 V6A 0.95 0.068

A32V 0.96 0.51 AuCPB 0.93 0.037 OPt 0.91 0.0015
A14R 0.98 0.77 AuML 0.97 0.44 MIP 0.9 0.00091
A14C 0.79 5.5e-06 AuCL 0.94 0.045 MST 0.98 0.53

A25 0.89 0.022 TPPro 0.98 0.91 FST 0.95 0.10
A24a 0.96 0.35 STR 0.96 0.44 V5 0.98 0.68
A24b 0.97 0.41 TE1 0.96 0.17 V4T 0.95 0.082
A24c 0.97 0.54 TPO 0.97 0.31 A19M 0.98 0.80
A24d 0.92 0.017 ReI 0.95 0.40 V3A 0.91 0.006

A6DR 0.97 0.23 TE2 0.96 0.15 V4 0.97 0.064
A6Vb 0.97 0.32 PGa/IPa 0.97 0.45 V6 0.96 0.017
A6Va 0.98 0.56 TPt 0.94 0.033 A19DI 0.95 0.074
A8C 0.95 0.055 TE3 0.93 0.026 V3 0.95 0.0076
A6M 0.99 0.98 TEO 0.95 0.087 V2 0.96 0.29

A6DC 0.91 0.002 A36 0.98 0.54 Ent 0.99 0.99
A4c 0.97 0.43 A35 0.97 0.31 APir 0.94 0.24

A4ab 0.96 0.076 TF 0.96 0.021 Pir 0.97 0.53
PaIM 0.93 0.20 TL 0.98 0.084
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Supplementary figures
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Figure S1: The z-scored log neuron density distributions of the four species are statistically
indistinguishable at the 0.05 level based on pairwise Kolmogorov-Smirnov two-sample two-
sided tests. P-values and S-statistics displayed below and above the diagonal, respectively.
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Figure S2: Comparison of neuron and glia lognormality. A–C Histogram of z-scored log den-
sity and result of Shapiro-Wilk test for neurons (A), glia (B), and all cells combined (C). D
Barplot of p-values resulting from Shapiro-Wilk normality test for all cell types. Panel A is
equivalent to the data shown in Figure 1.
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Figure S3: Lognormality of cell densities from different staining types in macaque cortex based
on the macaque1 data set. A-C Histogram of z-scored log density and result of Shapiro-Wilk
test for NeuN staining only (A), Nissl staining only (B) and all measurements combined (C).
The Nissl data were scaled down based on the linear relationship with the NeuN data [10]. Red
crosses indicate outliers (|z-scored ln(ρ)| ≥ 3, which were excluded from the test. Panel C is
equivalent to the data shown in Figure 1.
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Figure S4: Neuron densities in the marmoset are compatible with our model of progenitor cell
division with variability. µ and σ2 are the mean and variance of ln(ρ), respectively; and are
significantly correlated with each other, as predicted by the model.
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Figure S5: Statistical model comparison across the entire cortex of different animals. A Relative
likelihood for seven compatible statistical models for all available area-level neuron density data
sets; numerical values indicated for each model and animal. The red color indicates a relative
likelihood < 0.05 with respect to the model with the highest likelihood. B The three best
statistical models (according to the relative likelihood) fitted to the neuron density histograms
in each animal; the three models produce visually nearly indistinguishable fits.
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Figure S6: Statistical model comparison within the marmoset cortical areas. A Relative like-
lihood for seven compatible statistical models for all areas of the marmoset; a red cross (x)
indicates a relative likelihood < 0.05 with respect to the model with the highest likelihood. B
Spatial distribution of relative likelihood for the three best statistical models. C The three best
statistical models fitted to the neuron density histograms in each area of marmoset cortex; the
three models produce visually nearly indistinguishable fits.
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