000907015 001__ 907015
000907015 005__ 20230522125343.0
000907015 0247_ $$2doi$$a10.1103/PhysRevA.105.032437
000907015 0247_ $$2ISSN$$a2469-9926
000907015 0247_ $$2ISSN$$a2469-9942
000907015 0247_ $$2ISSN$$a0556-2791
000907015 0247_ $$2ISSN$$a1050-2947
000907015 0247_ $$2ISSN$$a1094-1622
000907015 0247_ $$2ISSN$$a1538-4446
000907015 0247_ $$2ISSN$$a2469-9934
000907015 0247_ $$2Handle$$a2128/30968
000907015 0247_ $$2WOS$$aWOS:000779901900001
000907015 037__ $$aFZJ-2022-01811
000907015 082__ $$a530
000907015 1001_ $$00000-0001-7243-3663$$aMartínez-García, Fernando$$b0$$eCorresponding author
000907015 245__ $$aAnalytical and experimental study of center-line miscalibrations in Mølmer-Sørensen gates
000907015 260__ $$aWoodbury, NY$$bInst.$$c2022
000907015 3367_ $$2DRIVER$$aarticle
000907015 3367_ $$2DataCite$$aOutput Types/Journal article
000907015 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648637892_19887
000907015 3367_ $$2BibTeX$$aARTICLE
000907015 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907015 3367_ $$00$$2EndNote$$aJournal Article
000907015 520__ $$aA major challenge for the realization of useful universal quantum computers is achieving high fidelity two-qubit entangling gate operations. However, calibration errors can affect the quantum gate operations and limit their fidelity. To reduce such errors it is desirable to have an analytical understanding and quantitative predictions of the effects that miscalibrations of gate parameters have on the gate performance. In this work, we study a systematic perturbative expansion in miscalibrated parameters of the Mølmer-Sørensen entangling gate, which is widely used in trapped-ion quantum processors. Our analytical treatment particularly focuses on systematic center-line detuning miscalibrations. Via a unitary Magnus expansion, we compute the gate evolution operator, which allows us to obtain relevant key properties such as relative phases, electronic populations, quantum state purity and fidelities. These quantities, subsequently, are used to assess the performance of the gate using the fidelity of entangled states as performance metric. We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor. The method and the results presented here can help design and calibrate high-fidelity gate operations of large-scale quantum computers.
000907015 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000907015 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907015 7001_ $$00000-0002-2886-2302$$aGerster, Lukas$$b1
000907015 7001_ $$00000-0003-0880-3548$$aVodola, Davide$$b2
000907015 7001_ $$00000-0003-1507-0637$$aHrmo, Pavel$$b3
000907015 7001_ $$00000-0001-7410-4804$$aMonz, Thomas$$b4
000907015 7001_ $$00000-0002-9461-9650$$aSchindler, Philipp$$b5
000907015 7001_ $$0P:(DE-Juel1)179396$$aMüller, Markus$$b6
000907015 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.105.032437$$gVol. 105, no. 3, p. 032437$$n3$$p032437$$tPhysical review / A$$v105$$x2469-9926$$y2022
000907015 8564_ $$uhttps://juser.fz-juelich.de/record/907015/files/PhysRevA.105.032437.pdf$$yOpenAccess
000907015 909CO $$ooai:juser.fz-juelich.de:907015$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907015 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b6$$kFZJ
000907015 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000907015 9141_ $$y2022
000907015 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000907015 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000907015 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000907015 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000907015 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907015 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000907015 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000907015 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000907015 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000907015 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-23
000907015 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-23
000907015 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2022-11-23
000907015 920__ $$lyes
000907015 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000907015 980__ $$ajournal
000907015 980__ $$aVDB
000907015 980__ $$aUNRESTRICTED
000907015 980__ $$aI:(DE-Juel1)PGI-2-20110106
000907015 9801_ $$aFullTexts