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A major challenge for the realization of useful universal quantum computers is achieving high fidelity two-
qubit entangling gate operations. However, calibration errors can affect the quantum gate operations and limit
their fidelity. To reduce such errors it is desirable to have an analytical understanding and quantitative predictions
of the effects that miscalibrations of gate parameters have on the gate performance. In this work, we study a
systematic perturbative expansion in miscalibrated parameters of the Mølmer-Sørensen entangling gate, which
is widely used in trapped-ion quantum processors. Our analytical treatment particularly focuses on systematic
center-line detuning miscalibrations. Via a unitary Magnus expansion, we compute the gate evolution operator,
which allows us to obtain relevant key properties such as relative phases, electronic populations, quantum state
purity and fidelities. These quantities, subsequently, are used to assess the performance of the gate using the
fidelity of entangled states as performance metric. We verify the predictions from our model by benchmarking
them against measurements in a trapped-ion quantum processor. The method and the results presented here can
help design and calibrate high-fidelity gate operations of large-scale quantum computers.

DOI: 10.1103/PhysRevA.105.032437

I. INTRODUCTION

The implementation of a quantum information processor
requires accurate initialization, manipulation, and measure-
ment of its qubits. Here, achieving high-fidelity single-qubit
and multiqubit entangling gates has been at the focus of
intense efforts in recent years. Developments in various quan-
tum computing platforms [1–6] have pushed the fidelities of
the fundamental entangling gate operations [7–16]. This has
allowed increasingly more complex implementations of algo-
rithms on near-term noisy intermediate-scale quantum (NISQ)
devices [17–19], as well as progress towards the realization
of logical qubits that can be operated fault-tolerantly and in
the regime of beneficial error correction [20–25]. However,
achieving these high-fidelity gates or further improving them
requires the development and implementation of protocols
aimed at the detection and correction of possible miscalibra-
tions.

To this end, one can perform quantum process tomography
[26] to obtain a complete characterization of the action intro-
duced by a gate. However, this highly informative protocol

*f.martinez-garcia.974203@swansea.ac.uk
†Present address: Trapped Ion Quantum Information Group, Insti-

tute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzer-
land.

has the drawback of scaling exponentially with the number
of qubits involved in the gate [27]. Moreover, errors in the
resulting characterization can appear due to the existence of
state preparation and measurement (SPAM) errors or system-
atic errors [28]. These problems motivated the development
of a number of alternative techniques for the characteriza-
tion of gate performances such as randomized benchmarking
[29,30], cycle benchmarking [31,32], gate set tomography
[30,33], adaptive Bayesian inference protocols [34–36], and
machine-learning methods [37]. All of these protocols repre-
sent tools for learning about the imperfections of a quantum
gate implementation. Moreover, having access to an analytical
understanding of the effect that certain gate imperfections
have on the gate performance is desirable during the imple-
mentation and calibration of a quantum gate operation. This
systematic understanding of the gate interaction and its perfor-
mance can then be used to conclude which imperfection limits
the performance of the gate and by how much. Obtaining
such an understanding cannot be done physical-platform-
agnostically but requires studying the physics underlying the
specific gate operation under consideration.

One of the leading quantum computing platforms are
trapped ions [38–45]. Electronic states of trapped atomic
ions allow one to encode qubits, and laser fields are used
to manipulate their quantum information. While single-qubit
operations are relatively easy to model, implement, and cal-
ibrate, multiqubit entangling gates that rely on interactions,
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FIG. 1. Energy diagram for two ions with quantized center-
of-mass vibrational mode of frequency ωsb interacting with a
bichromatic laser which allows a resonant two-photon transition
between |g, g, n〉 and |e, e, n〉. There are four different paths, each
of them going through an intermediate virtual state separated by
ε = ωsb − ωd from one of the sidebands. A similar diagram can be
drawn for the two-photon transition between the states |e, g, n〉 and
|g, e, n〉 introduced by the MS gate.

mediated by the common vibrational modes of the trapped ion
crystals, are significantly more complex. Examples of such
gates include, but are not limited to, Mølmer-Sørensen (MS)
[46,47], as well as Raman and microwave gates [7,11,48–
51]. Consequently, the gate calibration requires adjusting an
increased number of parameters whose effects on the gate
action become more difficult to accurately model.

In this work, we focus on the study of the MS gate, which is
based on the application of a bichromatic light field to perform
correlated spin-flips over the set of qubits on which it acts.
The application of the MS gate depends on the calibration
of different parameters, such as the gate time or the Rabi
frequency of the interaction of the laser field with the ions.
For these miscalibrations, it is possible to obtain analytical
expressions that help in understanding their effect on the per-
formance of the gate [47,52]. Here, miscalibrations cause an
unwanted residual entanglement between the ions and their
motional state at the end of the gate operation, or result in
incorrect final internal states of the ions. However, there are
other possible parameter miscalibrations that do not allow for
an analytical derivation of the gate. This is the case of the
center-line detuning, which appears due to the two frequencies
of the MS gate laser field not being centered around the carrier
transition. While there is no analytical model for the effects of
the center-line detuning miscalibration, an understanding of
its effects is highly desirable, as explained before, in order to
determine its impact on the gate performance quantitatively,
as well as for its calibration.

In this work, we focus on the study of the effects that the
above-mentioned center-line detuning miscalibration has on
the MS gate. In practice, this detuning arises when the bichro-
matic laser field produces an ac Stark shift due to interaction
with off-resonant atomic levels [53,54]. For this reason it can-
not be simply calibrated by measuring the transition frequency
using a single monochromatic laser field. The existence of
this center-line detuning affects the correct behavior of the
gate as it breaks both the resonance and the symmetry of
the four two-photon resonant paths, introduced by the bichro-
matic laser field, on which the gate is based (see Fig. 1 and
the detailed discussion below). To derive the main effects of

this miscalibration, we perform a perturbative study of the
center-line detuning and derive a semi-analytical model based
on a Magnus expansion [55]. From this perturbative study we
obtain a description for the effect of the center-line-detuned
gate as a modified version of the evolution introduced by
the ideal MS gate. This modified evolution acting over initial
states in the computational basis has the effect, up to first or-
der, of introducing unwanted relative phases and, up to second
order, of changing the final populations as well as causing
unwanted residual entanglement between the qubits and the
motional states, decreasing the fidelity and purity of the final
states. The analytical predictions that our model produces for
these quantities can then be used to estimate the center-line
detuning of the gate in order to correct it, without requiring
numerical calculations nor fitting procedures. Furthermore,
we carry out a series of experiments in a trapped-ion quantum
processor, against which we benchmark our theoretical pre-
dictions, finding good quantitative agreement. We note that
the effect that the center-line detuning has on the gate has
the same form as the effect of qubit frequency miscalibrations
that can appear in microwave gates, where they can constitute
one of the main sources of error [51,56,57]. Therefore, our
results can also be applied to the modeling and calibration of
these gate miscalibrations. Finally, it is worth mentioning that
one can use a similar systematic perturbative approach as the
one we use to study the effect of other miscalibrations that
do not allow for an analytical solution. An example of such a
scenario is errors related to the vibrational states of the ions,
which has been recently studied in Ref. [58].

This paper is structured as follows: we begin by reviewing
in Sec. II the MS gate model, where we introduce a series
of experimentally relevant and possibly miscalibrated control
parameters, including the center-line detuning. In Sec. III we
introduce the derivation of a Magnus expansion applied to
understanding the effect of the center-line-detuned gate, with
which we will be able to obtain the form of the final states
after the application of the miscalibrated MS gate. In Sec. IV
we then use these final states in order to obtain expressions
to predict quantities of interest such as populations, relative
phases, fidelities, and purities and compare these predictions
with results obtained from numerical integration of the gate
Hamiltonian. In Sec. V we benchmark our theoretical predic-
tions against experimental results. Finally, Sec. VI presents
conclusions and an outlook.

II. MØLMER-SØRENSEN GATE DYNAMICS

In this section we review the physics underlying the MS
gate [46,47,52]. We first outline the derivation of the ideal MS
gate, i.e., for the case in which all the parameters involved in
the gate are correctly calibrated, yielding the desired action of
the gate on the trapped-ion system. The gate is based on the
application of a force that is dependent on the internal state of
the ions and takes advantage of a common vibrational mode
shared between the trapped ions [59]. This force induces a
periodic movement of the motional state of the ions in phase
space. At the end of the gate the motion is returned to its
original state, but with an accumulated relative phase in the
internal states. This interaction can then be used to create
entanglement between the qubits. The MS gate can be used
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to create entanglement between more than two ions with a
single application and is independent of the initial vibrational
state to first order [46,47]. This last property provides the gate
with a robustness when working with thermal states of the
gate-mediating phonon mode, which can result from imper-
fect ground-state cooling. After having explained the ideal MS
gate, we then explain how a finite center-line detuning mod-
ifies the Hamiltonian of the gate. We then use this resulting
Hamiltonian as the starting point for our perturbative analysis
of the center-line-detuned gate.

A. Ideal Mølmer-Sørensen gate Hamiltonian

To derive the MS gate Hamiltonian, let us consider a sys-
tem of two ions in a linear trap interacting with a bichromatic
laser field of frequencies ω1 and ω2. Additionally, we con-
sider only the lowest-frequency center-of-mass (c.m.) axial
vibrational mode of the ions and ignore the other more en-
ergetic modes [59], since the frequency difference between
the c.m. mode and the other modes is much larger than the
Rabi frequency of the driving laser field. This system may be
described by the Hamiltonian

H (t ) = H0 + Hint (t ),

H0 =
2∑

j=1

ωeg,0

2
σz, j + ωsb(a†a + 1/2),

Hint (t ) =
2∑

j=1

�(t )

2
σx, j

× (ei(�k1�x j−ω1t+ϕ) + ei(�k2�x j−ω2t+ϕ) + H.c.), (1)

where ωeg,0 is the transition frequency between the internal
states |e〉 (excited) and |g〉 (ground) used to encode the qubit;
ωsb is the frequency of the c.m. mode, which defines the
distance of the motional sidebands (Fig. 1) from the carrier;
a† and a are the ladder operators related to the c.m. mode;
σx, j , σy, j , and σz, j represent the Pauli operators acting on the
internal state of the jth ion; ϕ is the phase of the two laser
tones of frequencies ω1 and ω2—we will consider ϕ to be
equal for both; �k1 and �k2 are the wave vectors of each laser
tone; �(t ) is the Rabi frequency, which is assumed to be equal
for all ions and for both components of the laser field and can
be time dependent for a general pulse shape of the laser, f (t ),

�(t ) = � f (t ). (2)

To implement the MS gate, the frequencies of the bichro-
matic laser field must be centered around the carrier transition
frequency and close to the sideband transition frequency; that
is, ω1 = ωeg,0 + ωd and ω2 = ωeg,0 − ωd , with ωd being close
but not equal to ωsb, see Fig. 1. Introducing these values into
the interaction term of the Hamiltonian we obtain

Hint (t ) =
2∑

j=1

�(t )

2
(ei[�k1�x j−(ωeg,0+ωd )t+ϕ]

+ ei[�k2�x j−(ωeg,0−ωd )t+ϕ] + H.c.)σx, j . (3)

We can write �ki�x = ηi(a† + a) with i = 1, 2, where ηi is
the Lamb-Dicke parameter [44], and since ωd � ωeg,0 we

can assume η1, η2 ≈ η. We can simplify this Hamiltonian by
assuming that we are in the Lamb-Dicke regime, η

√
n � 1,

with n being the phonon number of the c.m. motional state.
With this consideration, we can expand the exponentials up to
first order in η, while ignoring higher-order terms. Then we
transform to the interaction picture defined by the evolution
operator generated by the free Hamiltonian, H0, and introduce
the sideband detuning as ε = ωsb − ωd . As a result, we obtain
the following Hamiltonian:

Ĥ (t ) = −η�(t )(a†eiεt + ae−iεt )Sϕ, (4)

where we have applied the rotating wave approximation to
keep only the terms rotating with ε and ignore the other
fast-rotating terms that oscillate with ωsb + ωd or ωeg,0, and
the carrier term, for which we considered � � ωd , and we
defined

Sϕ = Sy cos(ϕ) + Sx sin(ϕ), (5)

and

Sα = 1

2

2∑
j=1

σα, j, α = x, y, z. (6)

The Hamiltonian in Eq. (4) can be integrated to obtain the
corresponding evolution operator [47,52]

Û0(t ) = D

(∫ t

0
γ (t ′)dt ′

)

× exp

(
iIm

∫ t

0
γ (t ′)dt ′

∫ t ′

0
γ ∗(t ′′)dt ′′

)
, (7)

with D(α) being the displacement operator, D(α) =
exp(αa† − α∗a), and

γ (t ) = iη�(t )eiεt Sϕ. (8)

The parameters of the gate can be tuned in order to obtain
the desired evolution

MSϕ (θ ) = exp
(
iθS2

ϕ

)
. (9)

One typically aims to obtain the case with θ = π/2, for which
the action of the gate on a state in the computational basis pro-
duces a maximally entangled state. In the following, we focus
on the case of a time-independent laser pulse for simplicity.
We note, however, that similar expressions can be derived for
MS gate realizations based on time-dependent pulse shapes,
which have been implemented, e.g., in Ref. [52]. Here, the
evolution operator is given by

Û0(t ) = D

(
η�

ε
(eiεt − 1)Sϕ

)

× exp

{
i

[
(η�)2

ε
t −

(
η�

ε

)2

sin(εt )

]
S2

ϕ

}
. (10)

We can see from Eq. (10) that, if the total gate time tg and the
sideband detuning ε satisfy

tg|ε| = 2π, (11)

then the displacement operator reduces to the identity op-
erator. This can be understood as the gate introducing a
displacement in phase space, which returns to the initial state
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FIG. 2. Trajectory in phase space induced by the gate with con-
stant Rabi frequency with the ions in the +1 eigenstate of Sϕ (left
loop, in orange) and the −1 eigenstate (right loop, in blue), with the
black circle indicating the initial position. If we apply the gate for
the correct amount of time the trajectory returns to the initial point in
phase space. The rotation introduced by the gate is given by the area
enclosed by the trajectory.

at the end of the gate after completing a loop (see Fig. 2),
regardless of the initial motional and electronic state. This
ensures that the internal state of the ions and their motional
state decouple at the end of the gate, leaving no residual en-
tanglement between them. Finally, if the condition in Eq. (11)
is satisfied, then one can also choose the gate parameters so
they satisfy

(η�)2

ε
tg = π

2
. (12)

One can see that if these conditions are fulfilled the evolution
operator in Eq. (10) takes the form of the maximally entan-
gling MS gate, MSϕ (π/2).

While this would be the effect of the ideal MS gate,
obtained by a perfect calibration of the parameters, it is impor-
tant to understand what are the effects that a wrong calibration
would introduce in the gate. One can see, for example, that
if the relation in Eq. (12) is not satisfied, the entanglement
between the internal state of the ions introduced by the gate
would not be the desired one. Additionally, a miscalibration in
the relation between the gate time and the sideband detuning
shown in Eq. (11) can lead to the argument of the displace-
ment operator not being zero, leading to both a change in the
motional state, and an imperfect decoupling between the mo-
tional and internal states of the ions. This can be understood
as the gate causing a loop in phase space that does not return
the motional state to the initial one at the end of the gate.
On top of this, this miscalibration would also introduce an
error in the value of θ . Therefore, both of these miscalibra-
tions introduce unwanted effects that reduce the fidelity of the
gate.

The previous examples of the effects that some miscali-
brations have on the gate can be easily understood thanks
to having access to a closed form of the time evolution
operator describing the gate. However, this will not be the
case for a center-line-detuned gate. In the following we
introduce the sources of center-line detunings and show
how this miscalibration affects the Hamiltonian of the MS
gate.

FIG. 3. Miscalibration of the MS gate due to the existence of a
center-line detuning, denoted by λ. This miscalibration breaks both
the symmetry of the four paths in which the MS gate is based and the
two-photon resonance. As a consequence, this miscalibration reduces
the fidelity of the gate.

B. Center-line detuned Mølmer-Sørensen gate

In the following we consider that a center-line detuning can
appear due to two different contributions. First, we consider
that the transition frequency between |g〉 and |e〉 can be af-
fected by an ac-Stark shift λac(t ) ∝ �(t )2 appearing due to the
interaction of the laser with off-resonant atomic levels [53,54],
which will be time-dependent due to the pulse-shape of the
laser, f (t ). Due to this, the transition frequency will have the
form

ωeg(t ) = ωeg,0 + λac f (t )2. (13)

The other contribution to the center-line detuning that we con-
sider is due to a shift λl of the bichromatic laser frequencies.
Considering this miscalibration, the frequencies are given by

ω1 = ωeg,0 + ωd + λl , ω2 = ωeg,0 − ωd + λl . (14)

Both of these contributions cause a detuning of the mean
value of the bichromatic frequencies from the carrier transi-
tion frequency, given by

λ(t ) = λac f (t )2 − λl . (15)

The effect of this miscalibration on the level structure of the
MS gate at a given time is shown in Fig. 3.

We can introduce these changes into the model and follow
a similar derivation as in Sec. II A. In this case, instead of
changing into the interaction picture defined by the evolution
operator generated by H0, we transform to an interaction pic-
ture defined by

V (t ) = exp

[
i

(
2∑

j=1

ωeg,0 − λl

2
σz, j + ωsb(a†a + 1/2)

)
t

]
.

(16)
The resulting Hamiltonian is given by

Ĥ (t ) = λ(t )Sz − η�(t )(a†eiεt + ae−iεt )Sϕ. (17)

Therefore, the effect of the center-line detuning miscali-
brations is the appearance of an unwanted Sz term in the
Hamiltonian. This unwanted term causes the resulting time
evolution to differ from the ideal gate, as illustrated in Fig. 4.
It also causes the miscalibrated gate to evade an analytical
closed-form solution. In the following section we present a
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FIG. 4. Trajectory in phase space induced by the gate with a
constant laser pulse [ f (t ) = 1 for the duration of the gate] for the
cases where the ions are in the +1 eigenstate of Sϕ (left trajectory,
in orange) and the −1 eigenstate (right trajectory, in blue), and the
black circle indicating the initial position, with a center-line detun-
ing of λ(t )/ε = λ/ε = 0.1. The center-line detuning miscalibration
deforms the loop as compared with the ideal case in Fig. 2, causing
the final motional state to differ from the initial one, therefore intro-
ducing an entanglement between the motional states and the ionic
states. Additionally, the trajectory in this case is dependent on the
initial motional state, with the case shown being for initial |n = 0〉.
This effect also causes the final internal state to be different from the
ideal one (not shown).

perturbative study based on a Magnus expansion, to analyze
the effect of the center-line detuning on gate performance.

III. PERTURBATIVE STUDY OF THE
CENTER-LINE-DETUNED MØLMER-SØRENSEN GATE

As we saw in the previous section, the Hamiltonian in-
cluding the center-line detuning has the form of the ideal
Hamiltonian of the MS gate plus an additional term ac-
counting for the center-line-detuning miscalibration. In the
following we rescale the time as τ = εt , which is dimen-
sionless since the center-line detuning ε is a frequency.
This rescaling is convenient since it makes our study in-
dependent of specific choices for the gate parameters. The
time-dependent Schrödinger equation becomes

iε
d

dτ
φ(τ ) = Ĥ (τ/ε)φ(τ ). (18)

The time evolution is governed by the rescaled Hamiltonian
Ĥ(τ ) given by

Ĥ(τ ) = Ĥideal(τ ) + Ĥcl(τ ), (19)

where

Ĥideal(τ ) = −�̃(τ/ε)(a†eiτ + ae−iτ )Sϕ,

Ĥcl(τ ) = λ̃(τ/ε)Sz, (20)

with �̃(τ/ε) = η�(τ/ε)/ε and λ̃(τ/ε) = λ(τ/ε)/ε, which
are dimensionless parameters. To simplify the analysis, in
the following, we consider a square pulse shape. In this case
we can write λ̃(τ/ε) = λ̃ = (λac − λl )/ε and �̃(τ/ε) = �̃ =
η�/ε, which satisfies �̃ = 1/2 when we consider the condi-
tions in Eqs. (11) and (12). We note that, for the study of a
given time-dependent pulse shape, one can follow a similar

derivation as the one that we show, at the cost of introduc-
ing the pulse shape in the respective numerical integrals that
appear.

Our goal thus consists of obtaining the evolution operator,
Û (τ ), associated with the Hamiltonian in Eq. (19). In this
section, we study the effect of the center-line-detuning miscal-
ibration by transforming the Hamiltonian into the interaction
picture defined by the ideal Hamiltonian, and using a Mag-
nus expansion approach to systematically treat the unwanted
terms, which we consider as a perturbation. This is a well
established approach [60–63], which is justified since typical
values of the center-line detuning miscalibration represent
only a small fraction of the value of the sideband detuning.
Without loss of generality, we continue to assume that the
common phase of both laser tones is ϕ = 0.

A. Magnus expansion

Since we already know the form of the evolution intro-
duced by the unperturbed Hamiltonian Ĥideal(τ ) given by the
rescaled version of Eq. (7),

Û0(τ ) = D[F (τ )Sy] exp
[
iG(τ )S2

y

]
, (21)

where F (τ ) = �̃(eiτ − 1) and G(τ ) = �̃2[τ − sin(τ )], we
can transform to another rotating frame defined by this free
evolution operator Û0(τ ). In this frame, the Hamiltonian de-
scribing the evolution of the system is

H̃(τ ) = Û†
0 (τ )ĤclÛ0(τ ). (22)

In this rotating frame, we separate the perturbation term due
to the center-line detuning of the initial Hamiltonian Ĥ(τ )
from the one that allows for an analytical solution. From
now on, we will focus on studying the term arising from the
center-line detuning as a perturbation to the Hamiltonian of
the ideal gate (with the perturbative parameter being λ̃) by
using a Magnus expansion [55,63], which has the advantage
of producing a unitary perturbative evolution operator at any
order. With this approach, we can represent the operator that
describes the evolution due to this Hamiltonian, Ũ (τ ), in the
following exponential form:

Ũ (τ ) = exp[M(τ )], (23)

where the Magnus exponent, M(τ ), is given by the following
series:

M(τ ) =
∑
j=1

Mj (τ ), (24)

with the first terms being

M1(τ ) = −i
∫ τ

0
H̃(t1)dt1, (25)

M2(τ ) = −1

2

∫ τ

0

∫ t1

0
[H̃(t1), H̃(t2)]dt2dt1. (26)

Here, M1(τ ) and M2(τ ) have a first- and second-order depen-
dence on λ̃, respectively. Thus, considering only these terms
and ignoring other possible ones which have a higher-order
dependence on the center-line detuning, the evolution operator
can be approximated by

Ũ (2)(τ ) ≈ 1 + M1(τ ) + [
M2(τ ) + M2

1 (τ )/2
]
. (27)
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We can now use this result with the free evolution operator
to obtain an approximation up to second order in the Magnus
expansion, Û (2)(τ ), of the evolution, Û (τ ), introduced by the
Hamiltonian in Eq. (19)

Û (2)(τ ) ≈ Û0(τ ) + Û0(τ )M1(τ ) + Û0(τ )
[
M2(τ ) + M2

1 (τ )/2
]
.

(28)
One can use this second-order evolution operator or, more
generally, the corresponding evolution operator obtained by
a perturbation expansion up to the K th order, to obtain the
action that the gate has over an initial state after a normal-
ized time τg. In the following we consider the initial states
|σ, σ ′, n〉 in the computational basis where σ, σ ′ ∈ {g, e}, and
study the action of the center-line-detuned gate on them in
a sum over kth-order perturbative state corrections |ψ (k)

σ,σ ′,n〉
with coefficients λ̃k . The resulting state |� (K )

σ,σ ′,n〉 can be writ-
ten as

∣∣� (K )
σ,σ ′,n

〉 = Û (K )(τg) |σ, σ ′, n〉 = |ψσ,σ ′,n〉 −
K∑

k=1

λ̃k
∣∣ψ (k)

σ,σ ′,n

〉
,

(29)
where |ψσ,σ ′,n〉 is the target state of the ideal gate.

We begin by studying the first-order Magnus expansion,
from which we will be able to write the perturbed evolution as
a unitary operator acting on the qubit space. From this we will
see that the only linear effect that the center-line detuning has
on the gate is the appearance of an unwanted relative phase.
Studying the second-order Magnus expansion will allow us
to capture more exactly the dependencies of other quantities,
namely, the populations, fidelities, and purities, on the center-
line detuning.

B. First-order Magnus expansion

To study the first-order dependence of the MS gate on the
center-line detuning, we consider only the first two terms in
Eq. (28):

Û (1)(τ ) ≈ Û0(τ ) + Û0(τ )M1(τ ). (30)

In the absence of any center-line detuning, the final state after
the application of the ideal MS gate for a normalized gate time
τg = 2π [see Eq. (11)] for each initial state are given by

|ψg,g,n〉 = Û0(τg) |g, g, n〉 = eiπ/4

√
2

(|g, g, n〉 − i |e, e, n〉),

(31)

|ψe,e,n〉 = Û0(τg) |e, e, n〉 = eiπ/4

√
2

(−i |g, g, n〉 + |e, e, n〉),

(32)

|ψg,e,n〉 = Û0(τg) |g, e, n〉 = eiπ/4

√
2

(|g, e, n〉 + i |e, g, n〉),

(33)

|ψe,g,n〉 = Û0(τg) |e, g, n〉 = eiπ/4

√
2

(i |g, e, n〉 + |e, g, n〉).

(34)

FIG. 5. Values of the numerical coefficients an, defined in
Eq. (45). These values appear in the predictions of our model due
to the first-order corrections to the final state. The value of the an

coefficients is maximum for n = 0 (see the Appendix) and, for the
first values of n, the first-order effects decrease as n increases [see, for
example, Eq. (47), Figs. 6 and 7]. These low values of n are the most
relevant in the experiment since the initial motional state of the ions
is cooled before the application of the gate. An inset is shown for the
absolute values of the In

m coefficients, from which the an coefficients
are obtained by using Eq. (45).

One can then calculate the first-order corrections to the final
states (see the Appendix), given by∣∣ψ (1)

g,g,n

〉 =
∑
m�0

[
i f odd

n,m Im
n (|e, g, m〉 + |g, e, m〉)

+ f even
n,m

[(
In
m + Im

n

) |g, g, m〉 + (
In
m − Im

n

) |e, e, m〉 ]]
,

(35)∣∣ψ (1)
e,e,n

〉 =
∑
m�0

[ − i f odd
n,m Im

n (|e, g, m〉 + |g, e, m〉)

+ f even
n,m

[(
In
m + Im

n

) |g, g, m〉 + (
In
m − Im

n

) |e, e, m〉 ]]
,

(36)∣∣ψ (1)
g,e,n

〉 = ∣∣ψ (1)
e,g,n

〉 = i
∑
m�0

In
m f odd

n,m (|g, g, m〉 + |e, e, m〉). (37)

Here, we defined

f even
n,m = [1 + (−1)n−m]

2
, f odd

n,m = [1 − (−1)n−m]

2
, (38)

and In
m, which is a matrix (see the Appendix and Fig. 5)

obtained from numerical integrations of

In
m = i

2

∫ τg

0
eiG(τ ) 〈m| D[F (τ )] |n〉 dτ. (39)

While these coefficients depend on the pulse shape and on
the phonon motional states, they do not have any dependence
on the center-line detuning. This implies that, for obtaining
corrections to the final states, we only need to calculate In

m
once for that given pulse shape. The coefficients obtained can
then be used with Eq. (29) for the calculation of the final
state |� (1)

σ,σ ′,n〉 up to first order for any value of the center-line
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detuning. In our constant pulse-shape case, all of these coef-
ficients have the form of a real value multiplied by (−1 + i).
The code used to obtain these coefficients can be found in
Ref. [64], which also includes the numerical calculation of
the second-order coefficients appearing in Sec. III C.

We now show that up to first order in λ̃, the center-line
detuning does not introduce any unwanted entanglement be-
tween the internal and motional states. This can be seen by
computing the density matrix of the state |� (1)

σ,σ ′,n〉 that from
Eq. (29) takes the form∣∣� (1)

σ,σ ′,n

〉 〈
�

(1)
σ,σ ′,n

∣∣ = ∣∣� (1),tr
σ,σ ′,n

〉 〈
�

(1),tr
σ,σ ′,n

∣∣ ⊗ |n〉 〈n| + O(λ̃2),
(40)

where the states |� (1),tr
σ,σ ′,n〉 are the following:

∣∣� (1),tr
g,g,n

〉 = 1√
2

[(1 − ianλ̃) |g, g〉 − i |e, e〉], (41)

∣∣� (1),tr
e,e,n

〉 = 1√
2

[−i |g, g〉 + (1 + ianλ̃) |e, e〉], (42)

∣∣� (1),tr
g,e,n

〉 = 1√
2

(|g, e〉 + i |e, g〉), (43)

∣∣� (1),tr
e,g,n

〉 = 1√
2

(|e, g〉 + i |g, e〉), (44)

and we defined the real numbers an as

an = 4In
n /(−1 + i). (45)

A representation of the values an for different values of n
is shown in Fig. 5. A simple calculation (see the Appendix)
shows that an < a0 for n > 0. Due to this reason, the first-
order correction will be largest for n = 0.

From these results one can obtain that the action of the
center-line-detuned MS gate over the qubits is, up to first
order, a unitary operator given by

Û (1),tr
n (τg) = 1√

2

⎛
⎜⎜⎝

1 − ianλ̃ 0 0 −i
0 1 i 0
0 i 1 0
−i 0 0 1 + ianλ̃

⎞
⎟⎟⎠. (46)

Therefore, the center-line detuning does not introduce, up to
first order, any unwanted entanglement between the internal
and motional states. To compare this unitary with the one from
the ideal MS gate we consider that 1 − ianλ̃ ≈ exp(−iλ̃an),
from which we can identify

Û (1),tr
n (τg) = Rz(−anλ̃)Û0(τg)Rz(−anλ̃), (47)

where

Rz(φ) = exp (iφSz/2). (48)

This shows that the predominant effect to first order, of the
center-line detuning is an unwanted relative phase shift for the
initial states |e, e, n〉 and |g, g, n〉 (see Fig. 6). Other relevant
effects, e.g., in the final electronic and motional populations,
quantum state fidelities or purity of the final qubit states ap-
pear in higher order and thus require an expansion at least to
second order in the center-line detuning.

FIG. 6. Representation in the Bloch sphere spanned by |g, g〉 and
|e, e〉 of the effect on the initial state |g, g, n〉 of the center-line-
detuned gate as obtained from the first-order Magnus expansion as in
Eq. (41) for n = 0, 1, 2. The black arrow indicates the ideal final state
(|g, g〉 − i |e, e〉)/

√
2 and the gray arrow indicates the state (|g, g〉 +

|e, e〉)/
√

2. These states show a relative phase different from the ideal
one, {|g, g〉 + exp[iφ (1)

g,g,n(λ̃)] |e, e〉}/√2, given by Eqs. (52) and (53)
in Sec. IV A. For a given initial Fock state we represent the position
of the final state up to first-order approximation, with the extremal
dots of the corresponding color representing the case with λ̃ = −0.1
(left dot) and λ̃ = 0.1 (right dot). Since the first-order expansion
gives a linear behavior in the center-line detuning, the position of the
final state for an intermediate value of λ̃ will be comprised between
these two extremal points.

C. Second-order Magnus expansion

To obtain the final states up to second order, we have to
calculate the terms corresponding to that order, as given by
Eq. (29). These are given by (see the Appendix)∣∣ψ (2)

g,g,n

〉 =
∑
m�0

Jn
+,m |g, g, m〉 − Jn

−,m |e, e, m〉 , (49)

∣∣ψ (2)
e,e,n

〉 =
∑
m�0

−Jn
−,m |g, g, m〉 + Jn

+,m |e, e, m〉 , (50)

∣∣ψ (2)
g,e,n

〉 = ∣∣ψ (2)
e,g,n

〉 =
∑
m�0

(
Jn

1,m − Jn
2,m

)
(|g, e, m〉 + |e, g, m〉).

(51)

with Jn
+,m, Jn

−,m, Jn
1,m, and Jn

2,m being coefficients obtained
numerically (see the Appendix). Like the In

m coefficients, these
coefficients do not depend on the center-line detuning. They
depend on the pulse shape, need to be calculated only once,
and can then be used to calculate the final state up to second
order, |� (2)

σ,σ ′,n〉, for any value of the center-line detuning.
In this second-order Magnus expansion, the effect of the

gate can no longer be expressed as a unitary operator act-
ing on the qubit states. This is because the states obtained
from second (or higher) order have a residual entanglement
between internal and motional states. As a consequence, the
states obtained after tracing the phonons are no longer pure
states. However, this second-order expansion will allow us to
obtain a better approximation of the final state, as we will see
in the following section.
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FIG. 7. Relative phases after the detuned MS gate with initial state |g, g, n〉 (in this example we consider initial c.m. phonon numbers n =
0, 1, 2, 3) for the numerical integration of the Hamiltonian in Eq. (19) and for the results from the first- and second-order Magnus expansion,
φ (1)

g,g,n and φ (2)
g,g,n, obtained by using Eq. (52). The ideal relative phase is −π/2 since the ideal final state is (|g, g〉 − i |e, e〉)/

√
2. The second-order

terms improve the phase estimation as compared with the first-order case. Very minor differences with respect to the numerics are expected and
result from not accounting for higher-order corrections. We note that, for the cases shown, the dependence of the phase error on the center-line
detuning decreases as n increases, in accordance to what is shown in Fig. 6. An inset is included for the case with initial n = 3 for clarity.

IV. PREDICTIONS OF THE MODEL

Having derived the final states after the application of the
center-line detuned gate by using a Magnus expansion, we
now estimate the effect that the center-line detuning miscali-
bration has on the phase (Sec. IV A), populations (Sec. IV B),
fidelities (Sec. IV C), and purities (Sec. IV D) of the final state
with respect to the ideal one. While the following study can
be performed for any initial state by using the results shown
in Sec. III, in the following we focus on the case of |g, g, n〉
as initial state. We also discuss how these results can be
generalized for the more experimentally relevant case where
ions are in thermal motional states.

A. Phase error

Following our perturbative approach, we can write the final
relative phase of the state in Eq. (29) when considering the
initial state |σ, σ ′, n〉 as the relative phase of the target state
φ

(0)
σ,σ ′,n plus the terms related to the kth-order correction, up to

the considered K th order:

φ
(K )
σ,σ ′,n(λ̃) = φ

(0)
σ,σ ′,n +

K∑
k=1

λ̃kδφ
(k)
σ,σ ′,n. (52)

Looking at the results from the first-order Magnus ex-
pansion, we can see that the predominant effects of this
miscalibration is over the relative phase of the final internal
states. From Eqs. (46) and (47) we can see that the initial states
|g, e, n〉 and |e, g, n〉 are not affected by a center-line detuning
in first order. As for the initial state |g, g, n〉, it has a first-order
correction given by [see Eq. (47)]

δφ(1)
g,g,n = an. (53)

This causes the final state to have an error in the final relative
phase as compared with the target state in Eq. (41), of relative
phase φ(0)

g,g,n = −π/2.
For the case of the initial state |e, e, n〉 one can obtain, after

following the same derivation, that the relative phase intro-
duced by the center-line detuning is the same but of opposite

sign. Therefore, the relative phase has a leading first-order
perturbative term dependent on the center-line detuning. A
visual representation of this effect is shown in Fig. 6.

Additionally, one can use the results from the second-order
Magnus expansion to improve the relative phase prediction.
To do this, one can, for the initial state |g, g, n〉 for example,
calculate the coherence element between |e, e〉 and |g, g〉 of
the final state, after tracing over the phonon mode,

ρee,gg(2)
g,g,n (λ̃) = −i + λ̃an + λ̃2bn

2
, (54)

where

bn = −(1 − i)
[(

Jn
+,n

)∗ − Jn
−,n

]
+

∑
m 
=n

(
In
m − Im

n

)(
In
m + Im

n

)∗
f even
n,m . (55)

Calculating the argument of this coherence term up to second
order, we obtain

δφ(2)
g,g,n = Re(bn), (56)

which can be used with Eq. (52) to obtain the second-order
correction. A comparison between the relative phases pre-
dicted up to first and second order, φ(1)

g,g,n and φ(2)
g,g,n, and the one

obtained from the numerical integration of the Hamiltonian in
Eq. (19), for different initial motional states is shown in Fig. 7.

This result can be generalized for the case where the initial
motional state is in a mixed state defined by a thermal dis-
tribution with a mean number of phonons n̄, pn̄(n), given by

pn̄(n) = n̄n

(n̄ + 1)n+1 . (57)

In this case, the relative phases in first, φ
(1)
g,g,n̄, and second

order, φ
(2)
g,g,n̄, are given by

φ
(K )
g,g,n̄ =

∑
n=0

pn̄(n)φ(K )
g,g,n, K = 1, 2. (58)
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FIG. 8. Populations after the action of the detuned MS gate over the initial state |g, g, n〉 (in this example we consider the cases with
n = 0, 1, 2, 3) obtained by numerical integration of the Hamiltonian in Eq. (19) and with the expressions for the second-order Magnus
expansion shown in Eqs. (59)–(61). None of these populations have a linear dependence with the center-line detuning, which justifies the use
of the second-order Magnus expansion for their study. While the quadratic terms captures the behavior of the populations with the center-line
detuning, one can also see that the model has slight deviations from the numerics in higher-order terms. This is especially the case for the
behavior of P(gg) for the initial state |g, g, 0〉, in which the second-order term has almost no importance, making the third-order term (which
is not considered in our calculations) dominant.

Since each of the populations of the thermal state is affected
by a different error in the final relative phase, one can expect
that the center-line detuning also introduces a dephasing of
the final internal state superposition, causing decoherence in
the quantum states.

B. Populations

From the final states obtained from the first order Magnus
expansion in Sec. III B one can obtain that the center-line
detuning does not introduce a first-order correction of the
populations when considering the elements of the computa-
tional basis as initial states. Thus, we have to consider the
states obtained from the second-order Magnus expansion. The
populations obtained from |� (2)

g,g,n〉 are given by

P(2)
g,g,n(gg, λ̃) = 1

2 + cg,g,nλ̃
2, (59)

P(2)
g,g,n(ee, λ̃) = 1

2 + ce,e,nλ̃
2, (60)

P(2)
g,g,n(ge, λ̃) = Pg,g,n(eg, λ̃) = ce,g,nλ̃

2. (61)

The expressions for cg,g,n, ce,g,n, and ce,e,n can be found in
the Appendix. From these equations one can see that the
final populations for this case have no linear dependence with
the center-line detuning. The center-line detuning not only
introduces an error in the populations of |g, g〉 and |e, e〉 but
also leads to a population of states |e, g〉 and |g, e〉, which are
ideally unpopulated when considering the initial |g, g, n〉 state.
A comparison between these predictions for the populations
and the numerics is shown in Fig. 8. In this figure one can see
that our model correctly predicts the behavior obtained from
the numerics, with differences arising from third-order terms,
which we are not considering.

C. Fidelity

Here, we will study the fidelity Fg,g,n(λ̃) of the final internal
state when applying a center-line-detuned MS gate to |g, g, n〉
compared with the ideal final internal state

∣∣ψ tr
g,g,n

〉 = 1√
2

(|g, g〉 − i |e, e〉). (62)
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FIG. 9. Infidelity of the target internal state obtained for the ideal MS gate (no center-line detuning) in Eq. (62) compared with the state
obtained by numerically integrating the Hamiltonian in Eq. (19), and the fidelity estimation obtained from the second-order Magnus expansion
for initial motional states with n = 0, 1, 2, 3. The initial state used is |g, g, n〉, with the second-order Magnus expansion prediction being
Eq. (66).

This fidelity will be given by

Fg,g,n(λ̃) = 〈
ψ tr

g,g,n

∣∣ρg,g,n
(
λ̃
)∣∣ψ tr

g,g,n

〉
, (63)

where ρg,g,n(λ̃) is the density matrix of the internal state after
applying the center-line-detuned MS gate. In a similar way as

for the populations studied in the previous section, this fidelity
has no linear dependence on the center-line detuning. Due to
this, we consider the fidelity up to second order Magnus ex-
pansion, for which we will need to consider the second-order
density matrix, which has the form

ρ (2)
g,g,n(λ̃) =

⎛
⎜⎜⎜⎜⎝

P(2)
g,g,n(gg, λ̃) 0 0 ρ

ee,gg(2)
g,g,n (λ̃)

0 P(2)
g,g,n(eg, λ̃) ρ

ge,eg(2)
g,g,n (λ̃) 0

0 ρ
eg,ge(2)
g,g,n (λ̃) P(2)

g,g,n(ge, λ̃) 0

ρ
gg,ee(2)
g,g,n (λ̃) 0 0 P(2)

g,g,n(ee, λ̃)

⎞
⎟⎟⎟⎟⎠, (64)

where ρ
gg,ee(2)
g,g,n (λ̃) is the complex conjugate of ρ

ee,gg(2)
g,g,n (λ̃) in

Eq. (54), and one can easily check that all the coherences of
|e, g〉 and |g, e〉 with |e, e〉 and |g, g〉 are zero thanks to the
appearance of products of f odd

n,m and f even
n,m defined in Eq. (38).

Finally, the last element left, ρ
ge,eg(2)
g,g,n (λ̃), has the following

form:

ρge,eg(2)
g,g,n (λ̃) = λ̃2

∑
m�0

f odd
n,m

∣∣Im
n

∣∣2
, (65)
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FIG. 10. Purity of the final state obtained numerically by taking |g, g, n〉 as the initial state compared with the purity obtained by using
Eq. (69) derived from the second-order Magnus expansion. The perturbative expression manages to capture the predominant second-order
effect of the center-line detuning, with the differences from the numerics arising from terms of higher order not considered.

although this element will not be needed to calculate the
fidelity or the purity in Sec. IV D in the second-order approx-
imation.

Using this density matrix we can obtain the fidelity up to
second order, which is given by

F (2)
g,g,n(λ̃) = 1 + λ̃2

2
[cg,g,n + ce,e,n − Im(bn)]. (66)

We compare this result for the final-state fidelities with
those obtained numerically by integrating the Hamiltonian in
Eq. (19) in Fig. 9.

Additionally, we can generalize this result for the case of
having an initial thermal state, for which we obtain

F (2)
g,g,n̄(λ̃) =

∑
n

pn̄(n)F (2)
g,g,n(λ̃). (67)

D. Purity

Finally, we study how much the center-line-detuned MS
gate transforms the initial pure state |g, g, n〉 into a mixed
state. To quantify this, we consider again the density matrix of
the final internal state, ρg,g,n(λ̃), in order to obtain its purity,

γg,g,n(λ̃), given by

γg,g,n(λ̃) = Tr[ρg,g,n(λ̃)2]. (68)

In a similar way as in the previous cases, the final purity
does not show a first-order dependence with the center-line
detuning. Therefore, we consider the purity up to second order
in the center-line detuning, for which we obtain

γ (2)
g,g,n(λ̃) = Tr

[(
ρ (2)

g,g,n(λ̃)
)2]

= 1 − λ̃2

(
Im(bn) − a2

n

2
− cg,g,n − ce,e,n

)
. (69)

From this result we can see that the phonon mixing introduced
by the center-line-detuned MS gate affects the purity of the fi-
nal state to second order in the center-line-detuning parameter.
A comparison between the result in Eq. (69) and the numerics
is shown in Fig. 10.

V. EXPERIMENTAL VALIDATION

In the previous section we compared the predictions of our
model with the numerical simulation results. Now we com-
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pare some of these model predictions with results obtained in
the experiment.

A. Experimental apparatus

The following experiments are performed on 40Ca+ ions
confined in a microstructured radio-frequency ion surface
trap [65]. Qubits are encoded in the computational subspace
formed by the 42S1/2,−1/2 ≡ |g〉 electronic ground state and
the metastable excited 32D5/2,−1/2 ≡ |e〉 state. We mediate the
MS gate by using the axial center-of-mass (c.m.) mode of
the two-ion crystal. The entangling operations are performed
by using a narrow-linewidth (<10 Hz) diode laser at 729 nm
with the two frequency tones imprinted using an acousto-
optic modulator. For any practical operating conditions, the
frequency difference between the c.m. mode and any of the
other modes of an N-ion crystal is much larger than the Rabi
frequency of the driving field [59], such that we can neglect
the coupling to all other modes. For all experiments, the ions
are initially Doppler cooled on the 42S1/2 −→ 42P1/2 transition,
followed by sideband cooling of the c.m. mode. State readout
is performed by fluorescence detection with a photomultiplier
tube [66].

B. Measurement protocol

To prepare the Fock states of the c.m. mode, we start by
preparing the ground state |g, g, 0〉 using standard sideband
cooling and optical pumping techniques. We then apply a π

pulse to one of the ions to spectroscopically decouple it in
an auxiliary level of the D5/2 manifold [66]. We then apply
alternating π pulses on the blue and red sideband, where each
pulse adds a single phonon. For odd phonon states, we apply
a π pulse on the carrier following the sideband pulses [67].
Finally, we retrieve the hidden ion from the auxiliary level.
For the initial ground-state cooling we find a mean phonon
number of n̄ ≈ 0.05. After the preparation sequence for Fock
states n > 0, we measure 5% population outside of the target
electronic state, which decreases the signal-to-noise ratio of
the measurement. We use an additional repumping step to
return this population to the electronic ground state, but this
leaves us with a corresponding error in the initial prepared
Fock state.

After preparing the desired |g, g, n〉 state, we need to con-
trol the center-line detuning of our MS gates. This center-line
detuning is here introduced on purpose by changing the fre-
quencies of the laser fields by λ from their ideal value. This
causes the Hamiltonian of the MS gate to have the form

Ĥexp = −η�(a†eiεt + ae−iεt )

× [Sy cos (ϕ + λt ) + Sx sin (ϕ + λt )]. (70)

This Hamiltonian can be obtained from the one that we con-
sidered in Eq. (17) with a time-independent value λ(t ) = λ

by performing a picture change defined by V (t ) = Rz(2λt ).
Therefore, after taking into account this picture change, all
the results of our model can be used for this experiment.
Although in the experiment, the laser pulse is switched on
and off adiabatically using a Blackman-like shape [68], each
switch on and off requires only ≈4% of the gate time. Due to
this, we approximate the pulse-shape as a constant one.

FIG. 11. Representation of the effect of the MS gate sequence
given by our model up to first order in the center-line detuning. A
center-line-detuned MS gate is applied to the initial state, |g, g, n〉
represented in (1). While the target state after a calibrated MS gate
should be 1/

√
2(|g, g, n〉 − i |e, e, n〉) in (2), the state after this first

gate differs by a phase as given by Eq. (47), resulting in the state (3).
The second detuned MS gate introduces a final phase, resulting in
the state in (4), before applying the ideal entangling operation. The
final state |e, e, n〉 in (5) after this sequence is obtained if the second
MS gate has a relative phase with respect to the first one given by
ϕd = φseq

n (λ).

The evolution introduced by the MS gate in the experiment
is, up to first order, given by

Û (1),tr
n,exp,ϕ (tg, t0) = Rz(2λt f )Û (1),tr

n,ϕ (tg)Rz(−2λt0), (71)

where t0 is the time at the beginning of the gate, t f = t0 + tg is
the time at the end, and we introduced ϕ to denote the phase
of the MS gate.

We perform a sequence of two center-line-detuned MS
gates (see Fig. 11), where we consider that the second one
has a relative phase of ϕd with respect to the first one. For this
sequence, the resulting population predicted by our model is,
up to first order, given by

P(ee, λ) = ∣∣〈e, e| Û (1),tr
n,exp,ϕd

(2tg, tg)Û (1),tr
n,exp,0(tg, 0) |g, g〉∣∣2

= ∣∣〈e, e| MSϕd (π/2)Rz
[−φseq

n (λ)
]
MS0(π/2) |g, g〉∣∣2

= 1 + cos
[
2ϕd + φ

seq
n (λ)

]
2

, (72)

where

φseq
n (λ) = 2λan

ε
(73)

represents the phase introduced by the center-line detun-
ing of the gates obtained from the first-order terms of our
model.

Using sequences of this type, we can measure the final
population of |e, e〉 for a given center-line detuning, while
varying the value of ϕd . This data can then be used to ex-
perimentally obtain the values of φ

seq
n (λ) for that center-line

detuning by fitting a cosine to the measurement outcomes,
and compare them with the predicted values from our model.
The fit includes amplitude and offset as free parameters, as
higher-order effects, dephasing, and SPAM errors will affect
the amplitude of the observed oscillations. The comparison
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FIG. 12. (a) Experimental measurements of the phase φseq(λ)
obtained by applying MS gates with ε = −2π × 11 kHz to initial
states |g, g, n〉 with n = 0, 1, 2, 3. The dashed lines represent the
corresponding estimated values of our model, obtained by using
Eq. (73). The asymmetry of the error bars stems from the asym-
metric behavior of the P(eg) + P(ge) outcomes observed in both
the numerical simulations shown in Fig. 8 and the experimental
results in Fig. 13, which causes an asymmetry on the contrast of the
phase oscillation. (b) Comparison of the slope values obtained from
first-order Magnus expansion and from performing a linear fit using
the experimental results.

between the experimental results and the prediction from our
model is shown in Fig. 12.

Using this setup, we can also study the behavior of the
populations after the application of a center-line detuned gate
in the experiment. To do this, we prepared |g, g, n〉 states
with n = 0, 1, 2, 3, to which we then applied a single MS
gate while scanning over the center-line detuning. A com-
parison between the experimental results and the populations
predicted by our model up to second order is shown in
Fig. 13.

VI. CONCLUSION AND OUTLOOK

In this work we introduced a systematic analytical model
for the characterization of the effects that a center-line-
detuning miscalibration has on the Mølmer-Sørensen gate.
This model was obtained from a Magnus expansion where
the center-line detuning was considered as a perturbation
of the ideal MS gate Hamiltonian. Using this approach we
have shown how to predict the form of the final states ob-
tained after application of the miscalibrated MS gate. Here,

we performed the expansion up to first and second order in
the center-line detuning by using a set of coefficients ob-
tained from numerical integrations. It is then straightforward
to understand the dependencies of relevant properties of the
final states, such as relative phases, populations, fidelities, and
purities, as functions characterized by these numerical coeffi-
cients. We then compared the prediction of these properties
obtained from our theoretical model to results from numerical
integration, finding only minor differences arising for higher
center-line-detuning values due to the influence of higher than
second-order terms, which we do not consider in our work.
However, this discrepancy between model and numerical pre-
dictions appears for values of the center-line detuning higher
than those appearing during an experimental calibration of the
MS gate. The value of the center-line-detuning miscalibration
is typically only a fraction of the sideband detuning. Further-
more, we compared the predicted values of relative phases and
populations from our model to values obtained from experi-
mental measurements by systematically varying deliberately
introduced center-line detuning and find good agreement be-
tween the model predictions and the experimental results. The
relationship between center-line detuning, phase, and phonon
number has not been studied previously to our knowledge. For
imperfectly cooled ions this may form a decoherence channel
because the thermal distribution of phonons is mapped to the
phase of the applied gate. These results further validated our
model and confirmed the utility of our model for studying and
improving experimental implementations of the MS gate. The
predictions of the model for the populations are here limited
by the order of the Magnus expansion. For example, the P(gg)
population for initial Fock state n = 0 has a leading-order
term of third order, with the first two orders vanishing (see
Figs. 8 and 13). Thus a higher-order expansion will be needed
and can be realized based on our systematic treatment to
accurately predict the behavior.

During the derivation of our model, we assumed for sim-
plicity that the pulse shape of the laser used to implement
the MS gate was constant. While this will not be exactly the
case in the experimental implementation, the laser is usually
shaped such that it has a relatively short (compared with
the gate time) ramp-up time at the beginning, in which the
laser intensity grows from zero up to its maximum value and,
similarly, a short ramp-down time at the end of the gate, in
which the intensity goes from this maximum value to zero.
Therefore, during most of the gate time, the laser pulse is
constant, justifying our approach. However, if one wanted
to account for this effect, or even consider a general time-
dependent laser pulse, this can be readily done by following
a similar derivation as shown, but calculating the numerical
coefficients appearing in the Magnus expansion by using the
time-dependent form of the center-line detuning shown in
Eq. (15). This could be especially useful when considering
implementations of fast gates [11,69], for which considering
the laser pulse as constant might stop being a valid approxima-
tion. Similarly, our analysis can be extended for estimating the
effect of slow fluctuations of the qubits’ frequencies on gate
performance, and to dynamical decoupling protocols that aim
at reducing the effect of such slowly varying miscalibrations
[51,56,57].
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FIG. 13. Experimental measurements of the populations obtained by application of a MS gate with ε = −2π × 11 kHz to initial states
|g, g, n〉 with n = 0, 1, 2, 3. The values obtained from the Magnus expansion are represented by the discontinuous lines, and those from
numerical simulation by dashed-dotted lines.

Another consideration is that, in the derivation of the MS
gate Hamiltonian, we assumed the gate to be operating in the
first-order Lamb-Dicke regime. However, since this regime is
defined by η

√
n � 1, this is only valid if, given a value of the

Lamb-Dicke parameter, the motional state of the ions has been
cooled to a sufficiently low value. This is the case for some ex-
periments which implement a MS gate with thermal states of
the order of n̄ ≈ 0.05, while having a Lamb-Dicke parameter
η ≈ 0.1 [66]. However, outside of this regime, the appearance
of higher-order Lamb-Dicke terms could introduce an error
and become the limiting factor of the gate performance. This
could be the case of the previously mentioned fast MS gates,
some of which rely on a higher value of η in order increase
the coupling to the sidebands. For the study of this case,
a generalization of our model considering such higher-order
Lamb-Dicke terms would be useful.

Finally, our model was derived by assuming that the center-
line detuning was the only miscalibration, but this will not be
the case in a real implementation of a MS gate, where other
parameters will differ from their ideal values, with some of
these examples and their consequences discussed in Sec. II A.
However, in the cases where the center-line-detuning miscal-
ibration is relatively larger than for the other parameters, it
will be the predominant effect. In this case one can detect that
the outcomes of the miscalibrated gate agree with the results
expected from the analytical model, and this information can
be used to compensate for the miscalibration of the center-
line detuning. Furthermore, our theory could be extended to
include other sources of miscalibrations, such as amplitude or
gate-time miscalibrations.

Overall, our model provides an in-depth understanding
of the effects of a center-line detuning in an implementa-
tion of the MS gate, which before had only been assessed
by performing numerical calculations. This can then be
used during the experimental calibration of the gate in
order to identify and compensate for the effect of center-
line-detuning miscalibrations. Therefore, we believe that
the method and the results presented here can help in
designing and improving calibration routines for entangling
gate operations.
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APPENDIX: NUMERICAL COEFFICIENTS

In the basis defined by the eigenstates of Sy, |+,+〉, |+,−〉,
|−,+〉, and |−,−〉, where

|±〉 = 1√
2

(|g〉 ± i |e〉), (A1)

the evolution operator of the ideal MS gate can be written as

Û0(τ ) =

⎛
⎜⎜⎝

D[F (τ )]eiG(τ ) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 D[−F (τ )]eiG(τ )

⎞
⎟⎟⎠,

(A2)

where F (τ ) = �̃(eiτ − 1) and G(τ ) = �̃2(τ − sin τ ). From
Eqs. (25) and (28) we obtain

Û1,M (τg) ≡ Û0(τg)M1(τg)

= −iλ̃
∫ τg

0
Û †

0 (τ ′ − τg)SzÛ0(τ ′)dτ ′. (A3)

Analyzing the form of the integrand shows that its application
couples a |+,+, n〉 state with |+,−, m〉 and |−,+, m〉, with
corresponding coefficients I++,n

+−,m and I++,n
+−,m, that is

Û1,M (τg) |+,+, n〉 = −λ̃
∑
m=0

I++,n
+−,m |+,−, m〉

+ I++,n
−+,m |−,+, m〉 . (A4)

Similarly, for the action on other Sy basis states we obtain

Û1,M (τg) |−,−, n〉 = −λ̃
∑
m=0

I−−,n
+−,m |+,−, m〉

+ I−−,n
−+,m |−,+, m〉 , (A5)

Û1,M (τg) |+,−, n〉 = −λ̃
∑
m=0

I+−,n
++,m |+,+, m〉

+ I+−,n
−−,m |−,−, m〉 , (A6)

Û1,M (τg) |−,+, n〉 = −λ̃
∑
m=0

I−+,n
++,m |+,+, m〉

+ I−+,n
−−,m |−,−, m〉 . (A7)

These coefficients are obtained from numerical integration of
matrix elements as described in Eq. (A3), and they can all be
described in terms of In

m ≡ I++,n
+−,m,

I++,n
+−,m = I++,n

−+,m = I+−,m
++,n = I−+,m

++,n = In
m, (A8)

I−−,n
+−,m = I−−,n

−+,m = I+−,m
−−,n = I−+,m

−−,n = (−1)n−mIn
m. (A9)

Therefore, it is enough to calculate the coefficients In
m, which

have the form

In
m = i

2

∫ τg

0
eiG(τ ) 〈m| D[F (τ )] |n〉 dτ, (A10)

where for m � n

〈m| D(α) |n〉 =
√

m!

n!
αm−ne−|α|2/2

n∑
k=0

(−1)k

(
n

k

)

× |α|2k

(m − n + k)!
, (A11)

and for m < n

〈m| D(α) |n〉 =
√

m!

n!
(α∗)n−me−|α|2/2

m∑
k=0

(−1)n−k

(
n

k

)

× |α|2(m−k)

(m − k)!
. (A12)

We note that the expectation values of the displacement
operator D(α) can be written also in terms of the associated
Laguerre polynomials L(s)

n as [70]

〈m| D(α) |n〉

=
⎧⎨
⎩

√
n!
m!α

m−ne−|α|2/2L(m−n)
n (|α|2) for m � n√

m!
n! (−α∗)n−me−|α|2/2L(n−m)

m (|α|2) for m < n.

(A13)

By using the expressions (A11) and (A12) or (A13), one can
numerically calculate the In

m coefficients for the first-order
Magnus expansion.

With the expressions (A13) and recalling that F (τ ) =
2i�̃eiτ/2 sin(τ/2) we can write In

n as

In
n = i

2

∫ τg

0
eiG(τ )e−s(τ )/2Lnb f (s(τ ))dτ, (A14)

where s(τ ) = 4�̃2 sin2(τ/2) and Ln are Laguerre polynomials
of order n. Considering that Ln(s) < L0(s) = 1 for 0 � s � 1
and n > 0 and that Ln(s) < L1(s) for 0 � s � 1 and n � 7, we
can conclude that |In

n | � |I0
0 | for n > 0 and that |In

n | � |I1
1 | for

2 � n � 7.
As for the second-order coefficients, we have to work with

Eq. (26) and the second-order terms of Eq. (28) to obtain
them. This requires calculating the action of the following
operators:

Û0(τg)M2(τg) = − λ̃2

2
Û0(τg)

∫ τg

0

∫ τ1

0

[
Û †

0 (τ1)SzÛ0(τ1), Û †
0 (τ2)SzÛ0(τ2)

]
dτ2dτ1, (A15)

Û0(τg)M1(τg)2 = −λ̃2
∫ τg

0

∫ τg

0
Û †

0 (τ1 − τg)SzÛ0(τ1)Û †
0 (τ2)SzÛ0(τ2)dτ2dτ1, (A16)

032437-15



FERNANDO MARTÍNEZ-GARCÍA et al. PHYSICAL REVIEW A 105, 032437 (2022)

where for convenience we define the combination of these operators as

Û2,M (τg) = Û0(τg)

(
M2(τg) + M1(τg)2

2

)
. (A17)

By close inspection of the previous integrands, one can see that they couple |+,+, n〉 and |−,−, n〉 to states of the form
|+,+, m〉 and |−,−, m〉:

Û2,M (τg) |+,+, n〉 = −λ̃2
∑
m=0

Jn
1,m |+,+, m〉 + Jn

2,m |−,−, m〉 , (A18)

Û2,M (τg) |−,−, n〉 = −λ̃2
∑
m=0

Jn
2,m |+,+, m〉 + Jn

1,m |−,−, m〉 . (A19)

Similarly, they couple |+,−, n〉 and |−,+, n〉 to |+,−, m〉 and |−,+, m〉:

Û2,M (τg) |+,−, n〉 = −λ̃2
∑
m=0

Jn
3,m(|+,−, m〉 + |−,+, m〉), (A20)

Û2,M (τg) |−,+, n〉 = −λ̃2
∑
m=0

Jn
3,m(|+,−, m〉 + |−,+, m〉), (A21)

where the coefficients, Jn
1,m, Jn

2,m, and Jn
3,m can be calculated by numerically integrating Eqs. (A15) and (A16) using Eqs. (A11)

and (A12). Their expressions are

Jn
1,m = 1

4

∫ τg

0

∫ τ1

0
e−i[G(τ1 )−G(τ2 )−G(τg)] 〈m|D(F (τg))D†(F (τ1))D(F (τ2))|n〉 dτ2dτ1

− 1

4

∫ τg

0

∫ τ1

0
ei[G(τ1 )−G(τ2 )+G(τg)] 〈m|D(F (τg))D†(F (τ2))D(F (τ1))|n〉 dτ2dτ1

+ 1

4

∫ τg

0

∫ τg

0
ei[G(τ2 )−G(τ1−τg)] 〈m|D†(F (τ1 − τg))D(F (τ2))|n〉 dτ2dτ1, (A22)

Jn
2,m = 1

4

∫ τg

0

∫ τ1

0
e−i[G(τ1 )−G(τ2 )−G(τg)] 〈m|D†(F (τg))D(F (τ1))D(F (τ2))|n〉 dτ2dτ1

− 1

4

∫ τg

0

∫ τ1

0
ei[G(τ1 )−G(τ2 )+G(τg)] 〈m|D†(F (τg))D(F (τ2))D(F (τ1))|n〉 dτ2dτ1

+ 1

4

∫ τg

0

∫ τg

0
ei[G(τ2 )−G(τ1−τg)] 〈m|D(F (τ1 − τg))D(F (τ2))|n〉 dτ2dτ1, (A23)

Jn
3,m = 1

8

∫ τg

0

∫ τ1

0
ei[G(τ1 )−G(τ2 )] 〈m|D†(F (τ1))D(F (τ2)) + D(F (τ1))D†(F (τ2))|n〉 dτ2dτ1

− 1

8

∫ τg

0

∫ τ1

0
ei[G(τ2 )−G(τ1 )] 〈m|D†(F (τ2))D(F (τ1)) − D(F (τ2))D†(F (τ1))|n〉 dτ2dτ1

+ 1

8

∫ τg

0

∫ τg

0
ei[G(τ1 )−G(τ2 )] 〈m|D†(F (τ1))D(F (τ2)) + D(F (τ1))D†(F (τ2))|n〉 dτ2dτ1. (A24)

After obtaining the numerical coefficients In
m, Jn

1,m, Jn
2,m, and Jn

3,m, we can write the action of the center-line-detuned gate over
the states |+,+, n〉, |+,−, n〉, |−,+, n〉, and |−,−, n〉. To consider the action over the states |g, g, n〉, |g, e, n〉, |e, g, n〉, and
|e, e, n〉 it is enough to use

|g, g, n〉 = 1

2
(|+,+, n〉 + |+,−, n〉 + |−,+, n〉 + |−,−, n〉), (A25)

|g, e, n〉 = −i

2
(|+,+, n〉 − |+,−, n〉 + |−,+, n〉 − |−,−, n〉), (A26)

|e, g, n〉 = −i

2
(|+,+, n〉 + |+,−, n〉 − |−,+, n〉 − |−,−, n〉), (A27)

|e, e, n〉 = 1

2
(− |+,+, n〉 + |+,−, n〉 + |−,+, n〉 − |−,−, n〉). (A28)
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Using the previous relations and Eqs. (A4)–(A7), we obtain the first-order correction to the states, |ψ (1)
σ,σ ′,n〉, defined in

Eqs. (35)–(37). Similarly, Using Eqs. (A18)–(A21), we obtain the second-order correction to the states, |ψ (2)
σ,σ ′,n〉, defined in

Eqs. (49)–(51), where we introduced the following coefficients:

Jn
+,m = Jn

1,m + Jn
2,m + 2Jn

3,m

2
, (A29)

Jn
−,m = Jn

1,m + Jn
2,m − 2Jn

3,m

2
. (A30)

Finally, from the form of the final state corrected up to second order when using the initial state |g, g, n〉, |� (2)
g,g,n〉, we can

calculate the coefficients that are used in Secs. IV B and IV D:

cg,g,n = −Re
(
Jn
+,n

) − Im
(
Jn
+,n

) +
∑
m�0

∣∣In
m + Im

n

∣∣2
f even
n,m , (A31)

ce,e,n = Re
(
Jn
−,n

) − Im
(
Jn
−,n

) +
∑
m 
=n

∣∣In
m − Im

n

∣∣2
f even
n,m , (A32)

ce,g,n =
∑
m 
=n

∣∣Im
n

∣∣2
f odd
n,m . (A33)

The corresponding coefficients when the initial state is in a different state of the computational basis can be calculated in a
similar way.
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