000907016 001__ 907016
000907016 005__ 20230123110610.0
000907016 0247_ $$2doi$$a10.1103/PhysRevX.12.011032
000907016 0247_ $$2Handle$$a2128/30966
000907016 0247_ $$2altmetric$$aaltmetric:123243099
000907016 0247_ $$2WOS$$aWOS:000761412600001
000907016 037__ $$aFZJ-2022-01812
000907016 082__ $$a530
000907016 1001_ $$00000-0001-9129-1314$$aHilder, J.$$b0
000907016 245__ $$aFault-Tolerant Parity Readout on a Shuttling-Based Trapped-Ion Quantum Computer
000907016 260__ $$aCollege Park, Md.$$bAPS$$c2022
000907016 3367_ $$2DRIVER$$aarticle
000907016 3367_ $$2DataCite$$aOutput Types/Journal article
000907016 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648636601_19887
000907016 3367_ $$2BibTeX$$aARTICLE
000907016 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907016 3367_ $$00$$2EndNote$$aJournal Article
000907016 520__ $$aQuantum error correction requires the detection of errors via reliable measurements of multiqubit correlation operators. As these operations are inherently faulty, fault-tolerant schemes for realizing quantum error correction are required. Recently, a paradigm requiring only minimal resource overhead in the form of “flag” qubits to detect and correct errors has been proposed. We experimentally demonstrate a fault-tolerant weight-4 parity-check measurement scheme, where one additional flag qubit serves to detect errors, which would otherwise proliferate into uncorrectable weight-2 errors onto the qubit register. We achieve a parity measurement fidelity of 92.3(2)%, which increases to 93.2(2)% upon conditioning to the flag readout result, which shows that the measurement scheme intercepts intrinsic errors occurring throughout the sequence. We show that the protocol is capable of reliably intercepting faults by deliberately injecting bit- and phase-flip errors. For holistic benchmarking of the parity measurement scheme, we use an entanglement witnessing scheme requiring a minimal number of measurements to verify genuine six-qubit multipartite entanglement. The demonstrated fault-tolerant parity measurement scheme constitutes the key building block in a broad class of resource-efficient flag-based quantum error correction protocols including topological color codes. Our hardware platform is based on atomic ions stored in a microchip ion trap. The qubit register is dynamically reconfigured via shuttling operations enabling effective full connectivity without operational cross talk, thereby providing key prerequisites underlying fault-tolerant circuit design. These architectural features in combination with the demonstrated approach to flag-based fault-tolerant quantum error correction open up a route toward scalable fault-tolerant quantum computing.
000907016 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000907016 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907016 7001_ $$00000-0002-5957-7539$$aPijn, D.$$b1
000907016 7001_ $$00000-0001-7372-8383$$aOnishchenko, O.$$b2
000907016 7001_ $$0P:(DE-HGF)0$$aStahl, A.$$b3
000907016 7001_ $$0P:(DE-HGF)0$$aOrth, M.$$b4
000907016 7001_ $$00000-0002-4419-0876$$aLekitsch, B.$$b5
000907016 7001_ $$0P:(DE-HGF)0$$aRodriguez-Blanco, A.$$b6
000907016 7001_ $$0P:(DE-Juel1)179396$$aMüller, M.$$b7$$eCorresponding author
000907016 7001_ $$00000-0002-5697-2568$$aSchmidt-Kaler, F.$$b8
000907016 7001_ $$00000-0001-5341-7860$$aPoschinger, U. G.$$b9$$eCorresponding author
000907016 773__ $$0PERI:(DE-600)2622565-7$$a10.1103/PhysRevX.12.011032$$gVol. 12, no. 1, p. 011032$$n1$$p011032$$tPhysical review / X$$v12$$x2160-3308$$y2022
000907016 8564_ $$uhttps://juser.fz-juelich.de/record/907016/files/PhysRevX.12.011032.pdf$$yOpenAccess
000907016 909CO $$ooai:juser.fz-juelich.de:907016$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907016 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000907016 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179396$$aForschungszentrum Jülich$$b7$$kFZJ
000907016 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000907016 9141_ $$y2022
000907016 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000907016 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907016 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000907016 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-27
000907016 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907016 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-27
000907016 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV X : 2021$$d2022-11-22
000907016 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000907016 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000907016 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-07-26T15:01:47Z
000907016 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-07-26T15:01:47Z
000907016 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-07-26T15:01:47Z
000907016 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000907016 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000907016 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-22
000907016 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bPHYS REV X : 2021$$d2022-11-22
000907016 920__ $$lyes
000907016 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000907016 980__ $$ajournal
000907016 980__ $$aVDB
000907016 980__ $$aUNRESTRICTED
000907016 980__ $$aI:(DE-Juel1)PGI-2-20110106
000907016 9801_ $$aFullTexts