000907018 001__ 907018
000907018 005__ 20240712113126.0
000907018 0247_ $$2doi$$a10.1002/cssc.202200401
000907018 0247_ $$2ISSN$$a1864-5631
000907018 0247_ $$2ISSN$$a1864-564X
000907018 0247_ $$2Handle$$a2128/31276
000907018 0247_ $$2altmetric$$aaltmetric:127710481
000907018 0247_ $$2pmid$$apmid:35333434
000907018 0247_ $$2WOS$$aWOS:000789879400001
000907018 037__ $$aFZJ-2022-01814
000907018 082__ $$a540
000907018 1001_ $$0P:(DE-HGF)0$$aReissig, Friederike$$b0
000907018 245__ $$aInvestigation of Lithium Polyacrylate Binders for Aqueous Processing of Ni‐Rich Lithium Layered Oxide Cathodes for Lithium Ion Batteries
000907018 260__ $$aWeinheim$$bWiley-VCH$$c2022
000907018 3367_ $$2DRIVER$$aarticle
000907018 3367_ $$2DataCite$$aOutput Types/Journal article
000907018 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654782982_2657
000907018 3367_ $$2BibTeX$$aARTICLE
000907018 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907018 3367_ $$00$$2EndNote$$aJournal Article
000907018 520__ $$aNi-rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium ion batteries for automotive applications. Aqueous processing of such materials, although being desirable to reduce costs and improve sustainability, remains challenging due to the Li + /H + -exchange upon contact with water, resulting in a pH increase and corrosion of the aluminum current collector. Herein, an example for tuning the properties of aqueous LiNi 0.83 Co 0.12 Mn 0.05 O 2 electrode pastes using a lithium polyacrylate-based binder to find the “sweet spot” for processing parameters and electrochemical performance is given. Polyacrylic acid is partially neutralized to balance high initial capacity, good cycling stability and the prevention of aluminum corrosion. Optimized LiOH/polyacrylic acid ratios in water are identified, showing comparable cycling performance to electrodes processed with polyvinylidene difluoride requiring toxic N-methyl-2-pyrrolidone as solvent. This work gives an exemplary study for tuning aqueous electrode pastes properties aiming towards a more environmentally friendly processing of Ni-rich cathodes.
000907018 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000907018 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907018 7001_ $$0P:(DE-Juel1)191492$$aPuls, Sebastian$$b1$$ufzj
000907018 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b2
000907018 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$ufzj
000907018 7001_ $$0P:(DE-HGF)0$$aSchmuch, Richard$$b4
000907018 7001_ $$0P:(DE-HGF)0$$aGómez Martín, Aurora$$b5$$eCorresponding author
000907018 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202200401$$gp. cssc.202200401$$n11$$pe202200401$$tChemSusChem$$v15$$x1864-5631$$y2022
000907018 8564_ $$uhttps://juser.fz-juelich.de/record/907018/files/ChemSusChem%20-%202022%20-%20Reissig%20-%20Investigation%20of%20Lithium%20Polyacrylate%20Binders%20for%20Aqueous%20Processing%20of%20Ni%E2%80%90Rich%20Lithium.pdf$$yOpenAccess
000907018 909CO $$ooai:juser.fz-juelich.de:907018$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000907018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191492$$aForschungszentrum Jülich$$b1$$kFZJ
000907018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000907018 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000907018 9141_ $$y2022
000907018 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907018 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000907018 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000907018 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907018 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000907018 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000907018 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000907018 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000907018 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000907018 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000907018 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2021$$d2022-11-25
000907018 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2021$$d2022-11-25
000907018 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000907018 9801_ $$aFullTexts
000907018 980__ $$ajournal
000907018 980__ $$aVDB
000907018 980__ $$aUNRESTRICTED
000907018 980__ $$aI:(DE-Juel1)IEK-12-20141217
000907018 981__ $$aI:(DE-Juel1)IMD-4-20141217