001     907018
005     20240712113126.0
024 7 _ |a 10.1002/cssc.202200401
|2 doi
024 7 _ |a 1864-5631
|2 ISSN
024 7 _ |a 1864-564X
|2 ISSN
024 7 _ |a 2128/31276
|2 Handle
024 7 _ |a altmetric:127710481
|2 altmetric
024 7 _ |a pmid:35333434
|2 pmid
024 7 _ |a WOS:000789879400001
|2 WOS
037 _ _ |a FZJ-2022-01814
082 _ _ |a 540
100 1 _ |a Reissig, Friederike
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Investigation of Lithium Polyacrylate Binders for Aqueous Processing of Ni‐Rich Lithium Layered Oxide Cathodes for Lithium Ion Batteries
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654782982_2657
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ni-rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium ion batteries for automotive applications. Aqueous processing of such materials, although being desirable to reduce costs and improve sustainability, remains challenging due to the Li + /H + -exchange upon contact with water, resulting in a pH increase and corrosion of the aluminum current collector. Herein, an example for tuning the properties of aqueous LiNi 0.83 Co 0.12 Mn 0.05 O 2 electrode pastes using a lithium polyacrylate-based binder to find the “sweet spot” for processing parameters and electrochemical performance is given. Polyacrylic acid is partially neutralized to balance high initial capacity, good cycling stability and the prevention of aluminum corrosion. Optimized LiOH/polyacrylic acid ratios in water are identified, showing comparable cycling performance to electrodes processed with polyvinylidene difluoride requiring toxic N-methyl-2-pyrrolidone as solvent. This work gives an exemplary study for tuning aqueous electrode pastes properties aiming towards a more environmentally friendly processing of Ni-rich cathodes.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Puls, Sebastian
|0 P:(DE-Juel1)191492
|b 1
|u fzj
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 3
|u fzj
700 1 _ |a Schmuch, Richard
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gómez Martín, Aurora
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1002/cssc.202200401
|g p. cssc.202200401
|0 PERI:(DE-600)2411405-4
|n 11
|p e202200401
|t ChemSusChem
|v 15
|y 2022
|x 1864-5631
856 4 _ |u https://juser.fz-juelich.de/record/907018/files/ChemSusChem%20-%202022%20-%20Reissig%20-%20Investigation%20of%20Lithium%20Polyacrylate%20Binders%20for%20Aqueous%20Processing%20of%20Ni%E2%80%90Rich%20Lithium.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907018
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)191492
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMSUSCHEM : 2021
|d 2022-11-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEMSUSCHEM : 2021
|d 2022-11-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21