000907111 001__ 907111
000907111 005__ 20220419125826.0
000907111 0247_ $$2doi$$a10.1103/PhysRevLett.128.067201
000907111 0247_ $$2ISSN$$a0031-9007
000907111 0247_ $$2ISSN$$a1079-7114
000907111 0247_ $$2ISSN$$a1092-0145
000907111 0247_ $$2Handle$$a2128/30983
000907111 0247_ $$2altmetric$$aaltmetric:105645934
000907111 0247_ $$2pmid$$apmid:35213174
000907111 0247_ $$2WOS$$aWOS:000759205400005
000907111 037__ $$aFZJ-2022-01842
000907111 082__ $$a530
000907111 1001_ $$0P:(DE-HGF)0$$aDing, Shilei$$b0
000907111 245__ $$aObservation of the Orbital Rashba-Edelstein Magnetoresistance
000907111 260__ $$aCollege Park, Md.$$bAPS$$c2022
000907111 3367_ $$2DRIVER$$aarticle
000907111 3367_ $$2DataCite$$aOutput Types/Journal article
000907111 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1649169511_23720
000907111 3367_ $$2BibTeX$$aARTICLE
000907111 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907111 3367_ $$00$$2EndNote$$aJournal Article
000907111 520__ $$aWe report the observation of magnetoresistance (MR) that could originate from the orbital angular momentum (OAM) transport in a permalloy (Py)/oxidized Cu (Cu∗) heterostructure: the orbital Rashba-Edelstein magnetoresistance. The angular dependence of the MR depends on the relative angle between the induced OAM and the magnetization in a similar fashion as the spin Hall magnetoresistance. Despite the absence of elements with large spin-orbit coupling, we find a sizable MR ratio, which is in contrast to the conventional spin Hall magnetoresistance which requires heavy elements. Through Py thickness-dependence studies, we conclude another mechanism beyond the conventional spin-based scenario is responsible for the MR observed in Py/Cu∗ structures—originated in a sizable transport of OAM. Our findings not only suggest the current-induced torques without using any heavy elements via the OAM channel but also provide an important clue towards the microscopic understanding of the role that OAM transport can play for magnetization dynamics.
000907111 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000907111 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907111 7001_ $$00000-0002-7872-7571$$aLiang, Zhongyu$$b1
000907111 7001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b2
000907111 7001_ $$0P:(DE-HGF)0$$aYun, Chao$$b3
000907111 7001_ $$0P:(DE-HGF)0$$aXue, Mingzhu$$b4
000907111 7001_ $$0P:(DE-HGF)0$$aLiu, Zhou$$b5
000907111 7001_ $$00000-0003-0412-9939$$aBecker, Sven$$b6
000907111 7001_ $$0P:(DE-HGF)0$$aYang, Wenyun$$b7
000907111 7001_ $$0P:(DE-HGF)0$$aDu, Honglin$$b8
000907111 7001_ $$0P:(DE-HGF)0$$aWang, Changsheng$$b9
000907111 7001_ $$0P:(DE-HGF)0$$aYang, Yingchang$$b10
000907111 7001_ $$00000-0001-9466-0840$$aJakob, Gerhard$$b11
000907111 7001_ $$00000-0002-4848-2569$$aKläui, Mathias$$b12
000907111 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b13$$ufzj
000907111 7001_ $$0P:(DE-HGF)0$$aYang, Jinbo$$b14$$eCorresponding author
000907111 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.128.067201$$gVol. 128, no. 6, p. 067201$$n6$$p067201$$tPhysical review letters$$v128$$x0031-9007$$y2022
000907111 8564_ $$uhttps://juser.fz-juelich.de/record/907111/files/PhysRevLett.128.067201.pdf$$yOpenAccess
000907111 909CO $$ooai:juser.fz-juelich.de:907111$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b2$$kFZJ
000907111 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b13$$kFZJ
000907111 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000907111 9141_ $$y2022
000907111 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000907111 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000907111 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-02
000907111 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000907111 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000907111 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000907111 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000907111 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000907111 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000907111 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907111 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-02-02
000907111 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2019$$d2021-02-02
000907111 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000907111 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2019$$d2021-02-02
000907111 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000907111 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000907111 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000907111 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000907111 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000907111 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000907111 980__ $$ajournal
000907111 980__ $$aVDB
000907111 980__ $$aUNRESTRICTED
000907111 980__ $$aI:(DE-Juel1)IAS-1-20090406
000907111 980__ $$aI:(DE-Juel1)PGI-1-20110106
000907111 980__ $$aI:(DE-82)080009_20140620
000907111 980__ $$aI:(DE-82)080012_20140620
000907111 9801_ $$aFullTexts