000907140 001__ 907140
000907140 005__ 20240712100917.0
000907140 0247_ $$2doi$$a10.5194/gmd-15-2731-2022
000907140 0247_ $$2ISSN$$a1991-959X
000907140 0247_ $$2ISSN$$a1991-9603
000907140 0247_ $$2Handle$$a2128/31014
000907140 0247_ $$2altmetric$$aaltmetric:125957377
000907140 0247_ $$2WOS$$aWOS:000780834800001
000907140 037__ $$aFZJ-2022-01863
000907140 041__ $$aEnglish
000907140 082__ $$a550
000907140 1001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b0$$eCorresponding author
000907140 245__ $$aMassive-Parallel Trajectory Calculations version 2.2 (MPTRAC-2.2): Lagrangian transport simulations on graphics processing units (GPUs)
000907140 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2022
000907140 3367_ $$2DRIVER$$aarticle
000907140 3367_ $$2DataCite$$aOutput Types/Journal article
000907140 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1649424371_9014
000907140 3367_ $$2BibTeX$$aARTICLE
000907140 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907140 3367_ $$00$$2EndNote$$aJournal Article
000907140 520__ $$aLagrangian models are fundamental tools to study atmospheric transport processes and for practical applications such as dispersion modeling for anthropogenic and natural emission sources. However, conducting large-scale Lagrangian transport simulations with millions of air parcels or more can become rather numerically costly. In this study, we assessed the potential of exploiting graphics processing units (GPUs) to accelerate Lagrangian transport simulations. We ported the Massive-Parallel Trajectory Calculations (MPTRAC) model to GPUs using the open accelerator (OpenACC) programming model. The trajectory calculations conducted within the MPTRAC model were fully ported to GPUs, i.e., except for feeding in the meteorological input data and for extracting the particle output data, the code operates entirely on the GPU devices without frequent data transfers between CPU and GPU memory. Model verification, performance analyses, and scaling tests of the Message Passing Interface (MPI) – Open Multi-Processing (OpenMP) – OpenACC hybrid parallelization of MPTRAC were conducted on the Jülich Wizard for European Leadership Science (JUWELS) Booster supercomputer operated by the Jülich Supercomputing Centre, Germany. The JUWELS Booster comprises 3744 NVIDIA A100 Tensor Core GPUs, providing a peak performance of 71.0 PFlop s−1. As of June 2021, it is the most powerful supercomputer in Europe and listed among the most energy-efficient systems internationally. For large-scale simulations comprising 108 particles driven by the European Centre for Medium-Range Weather Forecasts' fifth-generation reanalysis (ERA5), the performance evaluation showed a maximum speed-up of a factor of 16 due to the utilization of GPUs compared to CPU-only runs on the JUWELS Booster. In the large-scale GPU run, about 67 % of the runtime is spent on the physics calculations, conducted on the GPUs. Another 15 % of the runtime is required for file I/O, mostly to read the large ERA5 data set from disk. Meteorological data preprocessing on the CPUs also requires about 15 % of the runtime. Although this study identified potential for further improvements of the GPU code, we consider the MPTRAC model ready for production runs on the JUWELS Booster in its present form. The GPU code provides a much faster time to solution than the CPU code, which is particularly relevant for near-real-time applications of a Lagrangian transport model.
000907140 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000907140 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x1
000907140 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907140 7001_ $$0P:(DE-Juel1)156619$$aBaumeister, Paul F.$$b1
000907140 7001_ $$0P:(DE-Juel1)180878$$aCai, Zhongyin$$b2
000907140 7001_ $$0P:(DE-Juel1)180256$$aClemens, Jan$$b3
000907140 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b4
000907140 7001_ $$0P:(DE-Juel1)129123$$aGünther, Gebhard$$b5
000907140 7001_ $$0P:(DE-HGF)0$$aHeng, Yi$$b6
000907140 7001_ $$0P:(DE-Juel1)187051$$aLiu, Mingzhao$$b7
000907140 7001_ $$0P:(DE-Juel1)176293$$aHaghighi Mood, Kaveh$$b8
000907140 7001_ $$0P:(DE-Juel1)3709$$aStein, Olaf$$b9
000907140 7001_ $$0P:(DE-Juel1)129162$$aThomas, Nicole$$b10
000907140 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b11
000907140 7001_ $$0P:(DE-HGF)0$$aWu, Xue$$b12
000907140 7001_ $$0P:(DE-Juel1)176891$$aZou, Ling$$b13
000907140 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-15-2731-2022$$gVol. 15, no. 7, p. 2731 - 2762$$n7$$p2731 - 2762$$tGeoscientific model development$$v15$$x1991-959X$$y2022
000907140 8564_ $$uhttps://juser.fz-juelich.de/record/907140/files/gmd-15-2731-2022.pdf$$yOpenAccess
000907140 8767_ $$8102160$$d2022-09-21$$eAPC$$jZahlung erfolgt$$zOABLE
000907140 909CO $$ooai:juser.fz-juelich.de:907140$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000907140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b0$$kFZJ
000907140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156619$$aForschungszentrum Jülich$$b1$$kFZJ
000907140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180878$$aForschungszentrum Jülich$$b2$$kFZJ
000907140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180256$$aForschungszentrum Jülich$$b3$$kFZJ
000907140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b4$$kFZJ
000907140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich$$b5$$kFZJ
000907140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187051$$aForschungszentrum Jülich$$b7$$kFZJ
000907140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176293$$aForschungszentrum Jülich$$b8$$kFZJ
000907140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3709$$aForschungszentrum Jülich$$b9$$kFZJ
000907140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129162$$aForschungszentrum Jülich$$b10$$kFZJ
000907140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b11$$kFZJ
000907140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176891$$aForschungszentrum Jülich$$b13$$kFZJ
000907140 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000907140 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x1
000907140 9141_ $$y2022
000907140 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000907140 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907140 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000907140 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-26
000907140 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907140 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-26
000907140 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000907140 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-16T18:00:10Z
000907140 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-16T18:00:10Z
000907140 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-01-16T18:00:10Z
000907140 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000907140 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000907140 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000907140 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2021$$d2022-11-25
000907140 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000907140 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000907140 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000907140 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGEOSCI MODEL DEV : 2021$$d2022-11-25
000907140 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000907140 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907140 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907140 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000907140 920__ $$lyes
000907140 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000907140 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000907140 9801_ $$aFullTexts
000907140 980__ $$ajournal
000907140 980__ $$aVDB
000907140 980__ $$aUNRESTRICTED
000907140 980__ $$aI:(DE-Juel1)JSC-20090406
000907140 980__ $$aI:(DE-Juel1)IEK-7-20101013
000907140 980__ $$aAPC
000907140 981__ $$aI:(DE-Juel1)ICE-4-20101013