001     907140
005     20240712100917.0
024 7 _ |a 10.5194/gmd-15-2731-2022
|2 doi
024 7 _ |a 1991-959X
|2 ISSN
024 7 _ |a 1991-9603
|2 ISSN
024 7 _ |a 2128/31014
|2 Handle
024 7 _ |a altmetric:125957377
|2 altmetric
024 7 _ |a WOS:000780834800001
|2 WOS
037 _ _ |a FZJ-2022-01863
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Hoffmann, Lars
|0 P:(DE-Juel1)129125
|b 0
|e Corresponding author
245 _ _ |a Massive-Parallel Trajectory Calculations version 2.2 (MPTRAC-2.2): Lagrangian transport simulations on graphics processing units (GPUs)
260 _ _ |a Katlenburg-Lindau
|c 2022
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1649424371_9014
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lagrangian models are fundamental tools to study atmospheric transport processes and for practical applications such as dispersion modeling for anthropogenic and natural emission sources. However, conducting large-scale Lagrangian transport simulations with millions of air parcels or more can become rather numerically costly. In this study, we assessed the potential of exploiting graphics processing units (GPUs) to accelerate Lagrangian transport simulations. We ported the Massive-Parallel Trajectory Calculations (MPTRAC) model to GPUs using the open accelerator (OpenACC) programming model. The trajectory calculations conducted within the MPTRAC model were fully ported to GPUs, i.e., except for feeding in the meteorological input data and for extracting the particle output data, the code operates entirely on the GPU devices without frequent data transfers between CPU and GPU memory. Model verification, performance analyses, and scaling tests of the Message Passing Interface (MPI) – Open Multi-Processing (OpenMP) – OpenACC hybrid parallelization of MPTRAC were conducted on the Jülich Wizard for European Leadership Science (JUWELS) Booster supercomputer operated by the Jülich Supercomputing Centre, Germany. The JUWELS Booster comprises 3744 NVIDIA A100 Tensor Core GPUs, providing a peak performance of 71.0 PFlop s−1. As of June 2021, it is the most powerful supercomputer in Europe and listed among the most energy-efficient systems internationally. For large-scale simulations comprising 108 particles driven by the European Centre for Medium-Range Weather Forecasts' fifth-generation reanalysis (ERA5), the performance evaluation showed a maximum speed-up of a factor of 16 due to the utilization of GPUs compared to CPU-only runs on the JUWELS Booster. In the large-scale GPU run, about 67 % of the runtime is spent on the physics calculations, conducted on the GPUs. Another 15 % of the runtime is required for file I/O, mostly to read the large ERA5 data set from disk. Meteorological data preprocessing on the CPUs also requires about 15 % of the runtime. Although this study identified potential for further improvements of the GPU code, we consider the MPTRAC model ready for production runs on the JUWELS Booster in its present form. The GPU code provides a much faster time to solution than the CPU code, which is particularly relevant for near-real-time applications of a Lagrangian transport model.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Baumeister, Paul F.
|0 P:(DE-Juel1)156619
|b 1
700 1 _ |a Cai, Zhongyin
|0 P:(DE-Juel1)180878
|b 2
700 1 _ |a Clemens, Jan
|0 P:(DE-Juel1)180256
|b 3
700 1 _ |a Griessbach, Sabine
|0 P:(DE-Juel1)129121
|b 4
700 1 _ |a Günther, Gebhard
|0 P:(DE-Juel1)129123
|b 5
700 1 _ |a Heng, Yi
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Liu, Mingzhao
|0 P:(DE-Juel1)187051
|b 7
700 1 _ |a Haghighi Mood, Kaveh
|0 P:(DE-Juel1)176293
|b 8
700 1 _ |a Stein, Olaf
|0 P:(DE-Juel1)3709
|b 9
700 1 _ |a Thomas, Nicole
|0 P:(DE-Juel1)129162
|b 10
700 1 _ |a Vogel, Bärbel
|0 P:(DE-Juel1)129164
|b 11
700 1 _ |a Wu, Xue
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Zou, Ling
|0 P:(DE-Juel1)176891
|b 13
773 _ _ |a 10.5194/gmd-15-2731-2022
|g Vol. 15, no. 7, p. 2731 - 2762
|0 PERI:(DE-600)2456725-5
|n 7
|p 2731 - 2762
|t Geoscientific model development
|v 15
|y 2022
|x 1991-959X
856 4 _ |u https://juser.fz-juelich.de/record/907140/files/gmd-15-2731-2022.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907140
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129125
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156619
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180878
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180256
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)187051
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)176293
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)3709
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)129162
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)176891
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 1
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-16T18:00:10Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-16T18:00:10Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-01-16T18:00:10Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOSCI MODEL DEV : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GEOSCI MODEL DEV : 2021
|d 2022-11-25
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21