000907141 001__ 907141
000907141 005__ 20230522125348.0
000907141 0247_ $$2doi$$a10.1088/1361-648X/ac5db3
000907141 0247_ $$2ISSN$$a0953-8984
000907141 0247_ $$2ISSN$$a1361-648X
000907141 0247_ $$2Handle$$a2128/31045
000907141 0247_ $$2altmetric$$aaltmetric:127703907
000907141 0247_ $$2WOS$$aWOS:000778395400001
000907141 037__ $$aFZJ-2022-01864
000907141 041__ $$aEnglish
000907141 082__ $$a530
000907141 1001_ $$0P:(DE-Juel1)172928$$aDenneulin, T.$$b0$$eCorresponding author
000907141 245__ $$aA transmission electron microscopy study of low-strain epitaxial BaTiO 3 grown onto NdScO 3
000907141 260__ $$aBristol$$bIOP Publ.$$c2022
000907141 3367_ $$2DRIVER$$aarticle
000907141 3367_ $$2DataCite$$aOutput Types/Journal article
000907141 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1650376087_10743
000907141 3367_ $$2BibTeX$$aARTICLE
000907141 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907141 3367_ $$00$$2EndNote$$aJournal Article
000907141 520__ $$aFerroelectric materials exhibit a strong coupling between strain and electrical polarization. In epitaxial thin films, the strain induced by the substrate can be used to tune the domain structure. Substrates of rare-earth scandates are sometimes selected for the growth of ferroelectric oxides because of their close lattice match, which allows the growth of low-strain dislocation-free layers. Transmission electron microscopy (TEM) is a frequently used technique for investigating ferroelectric domains at the nanometer-scale. However, it requires to thin the specimen down to electron transparency, which can modify the strain and the electrostatic boundary conditions. Here, we have investigated a 320 nm thick epitaxial layer of BaTiO3 grown onto an orthorhombic substrate of NdScO3 with interfacial lattice strains of −0.45% and −0.05% along the two in-plane directions. We show that the domain structure of the layer can be significantly altered by TEM sample preparation depending on the orientation and the geometry of the lamella. In the as-grown state, the sample shows an anisotropic a/c ferroelastic domain pattern in the direction of largest strain. If a TEM lamella is cut perpendicular to this direction so that strain is released, a new domain pattern is obtained, which consists of bundles of thin horizontal stripes parallel to the interfaces. These stripe domains correspond to a sheared crystalline structure (orthorhombic or monoclinic) with inclined polarization vectors and with at least four variants of polarization. The stripe domains are distributed in triangular-shaped 180° domains where the average polarization is parallel to the growth direction. The influence of external electric fields on this domain structure was investigated using in situ biasing and dark-field imaging in TEM.
000907141 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000907141 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907141 7001_ $$0P:(DE-HGF)0$$aEverhardt, A. S.$$b1
000907141 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ac5db3$$gVol. 34, no. 23, p. 235701 -$$n23$$p235701$$tJournal of physics / Condensed matter$$v34$$x0953-8984$$y2022
000907141 8564_ $$uhttps://juser.fz-juelich.de/record/907141/files/Denneulin_2022_J._Phys.%20_Condens._Matter_34_235701.pdf$$yOpenAccess
000907141 8564_ $$uhttps://juser.fz-juelich.de/record/907141/files/Paper_with_authors_.pdf$$yOpenAccess
000907141 8767_ $$d2022-04-19$$eHybrid-OA$$jPublish and Read
000907141 909CO $$ooai:juser.fz-juelich.de:907141$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000907141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172928$$aForschungszentrum Jülich$$b0$$kFZJ
000907141 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands$$b1
000907141 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000907141 9141_ $$y2022
000907141 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000907141 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000907141 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907141 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000907141 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907141 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-11$$wger
000907141 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000907141 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000907141 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000907141 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000907141 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2021$$d2022-11-11
000907141 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000907141 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000907141 920__ $$lyes
000907141 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000907141 980__ $$ajournal
000907141 980__ $$aVDB
000907141 980__ $$aUNRESTRICTED
000907141 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000907141 980__ $$aAPC
000907141 9801_ $$aAPC
000907141 9801_ $$aFullTexts