001     907141
005     20230522125348.0
024 7 _ |a 10.1088/1361-648X/ac5db3
|2 doi
024 7 _ |a 0953-8984
|2 ISSN
024 7 _ |a 1361-648X
|2 ISSN
024 7 _ |a 2128/31045
|2 Handle
024 7 _ |a altmetric:127703907
|2 altmetric
024 7 _ |a WOS:000778395400001
|2 WOS
037 _ _ |a FZJ-2022-01864
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Denneulin, T.
|0 P:(DE-Juel1)172928
|b 0
|e Corresponding author
245 _ _ |a A transmission electron microscopy study of low-strain epitaxial BaTiO 3 grown onto NdScO 3
260 _ _ |a Bristol
|c 2022
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1650376087_10743
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ferroelectric materials exhibit a strong coupling between strain and electrical polarization. In epitaxial thin films, the strain induced by the substrate can be used to tune the domain structure. Substrates of rare-earth scandates are sometimes selected for the growth of ferroelectric oxides because of their close lattice match, which allows the growth of low-strain dislocation-free layers. Transmission electron microscopy (TEM) is a frequently used technique for investigating ferroelectric domains at the nanometer-scale. However, it requires to thin the specimen down to electron transparency, which can modify the strain and the electrostatic boundary conditions. Here, we have investigated a 320 nm thick epitaxial layer of BaTiO3 grown onto an orthorhombic substrate of NdScO3 with interfacial lattice strains of −0.45% and −0.05% along the two in-plane directions. We show that the domain structure of the layer can be significantly altered by TEM sample preparation depending on the orientation and the geometry of the lamella. In the as-grown state, the sample shows an anisotropic a/c ferroelastic domain pattern in the direction of largest strain. If a TEM lamella is cut perpendicular to this direction so that strain is released, a new domain pattern is obtained, which consists of bundles of thin horizontal stripes parallel to the interfaces. These stripe domains correspond to a sheared crystalline structure (orthorhombic or monoclinic) with inclined polarization vectors and with at least four variants of polarization. The stripe domains are distributed in triangular-shaped 180° domains where the average polarization is parallel to the growth direction. The influence of external electric fields on this domain structure was investigated using in situ biasing and dark-field imaging in TEM.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Everhardt, A. S.
|0 P:(DE-HGF)0
|b 1
773 _ _ |a 10.1088/1361-648X/ac5db3
|g Vol. 34, no. 23, p. 235701 -
|0 PERI:(DE-600)1472968-4
|n 23
|p 235701
|t Journal of physics / Condensed matter
|v 34
|y 2022
|x 0953-8984
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907141/files/Denneulin_2022_J._Phys.%20_Condens._Matter_34_235701.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907141/files/Paper_with_authors_.pdf
909 C O |o oai:juser.fz-juelich.de:907141
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172928
910 1 _ |a Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS-CONDENS MAT : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21