000907157 001__ 907157
000907157 005__ 20230123110612.0
000907157 0247_ $$2doi$$a10.21468/SciPostPhysCore.5.1.017
000907157 0247_ $$2Handle$$a2128/31025
000907157 0247_ $$2WOS$$aWOS:000853259800017
000907157 037__ $$aFZJ-2022-01870
000907157 041__ $$aEnglish
000907157 1001_ $$0P:(DE-Juel1)167347$$aRosenbach, Daniel$$b0$$eCorresponding author
000907157 245__ $$aGate-induced decoupling of surface and bulk state properties in selectively-deposited Bi$_2$Te$_3$ nanoribbons
000907157 260__ $$aAmsterdam$$bSciPost Foundation$$c2022
000907157 3367_ $$2DRIVER$$aarticle
000907157 3367_ $$2DataCite$$aOutput Types/Journal article
000907157 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1649842076_25495
000907157 3367_ $$2BibTeX$$aARTICLE
000907157 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907157 3367_ $$00$$2EndNote$$aJournal Article
000907157 520__ $$aThree-dimensional topological insulators (TIs) host helical Dirac surface states at the interface with a trivial insulator. In quasi-one-dimensional TI nanoribbon structures the wave function of surface charges extends phase-coherently along the perimeter of the nanoribbon, resulting in a quantization of transverse surface modes. Furthermore, as the inherent spin-momentum locking results in a Berry phase offset of π of self-interfering charge carriers an energy gap within the surface state dispersion appears and all states become spin-degenerate. We investigate and compare the magnetic field dependent surface state dispersion in selectively deposited Bi2Te3 TI micro- and nanoribbon structures by analysing the gate voltage dependent magnetoconductance at cryogenic temperatures. While in wide microribbon devices the field effect mainly changes the amount of bulk charges close to the top surface we identify coherent transverse surface states along the perimeter of the nanoribbon devices responding to a change in top gate potential. We quantify the energetic spacing in between these quantized transverse subbands by using an electrostatic model that treats an initial difference in charge carrier densities on the top and bottom surface as well as remaining bulk charges. In the gate voltage dependent transconductance we find oscillations that change their relative phase by π at half-integer values of the magnetic flux quantum applied coaxial to the nanoribbon, which is a signature for a magnetic flux dependent topological phase transition in narrow, selectively deposited TI nanoribbon devices.
000907157 536__ $$0G:(DE-HGF)POF4-5222$$a5222 - Exploratory Qubits (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000907157 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907157 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000907157 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000907157 7001_ $$0P:(DE-Juel1)180184$$aMoors, Kristof$$b1$$ufzj
000907157 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur R.$$b2$$ufzj
000907157 7001_ $$0P:(DE-Juel1)172619$$aKölzer, Jonas$$b3$$ufzj
000907157 7001_ $$0P:(DE-Juel1)176848$$aZimmermann, Erik$$b4$$ufzj
000907157 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b5$$ufzj
000907157 7001_ $$0P:(DE-Juel1)167340$$aKarimzadah, Soraya$$b6
000907157 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b7$$ufzj
000907157 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b8$$ufzj
000907157 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b9$$ufzj
000907157 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b10$$ufzj
000907157 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b11$$ufzj
000907157 773__ $$0PERI:(DE-600)3071450-3$$a10.21468/SciPostPhysCore.5.1.017$$gVol. 5, no. 1, p. 017$$n1$$p017$$tSciPost Physics Core$$v5$$x2666-9366$$y2022
000907157 8564_ $$uhttps://juser.fz-juelich.de/record/907157/files/SciPostPhysCore_5_1_017.pdf$$yOpenAccess
000907157 909CO $$ooai:juser.fz-juelich.de:907157$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180184$$aForschungszentrum Jülich$$b1$$kFZJ
000907157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b2$$kFZJ
000907157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172619$$aForschungszentrum Jülich$$b3$$kFZJ
000907157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176848$$aForschungszentrum Jülich$$b4$$kFZJ
000907157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich$$b5$$kFZJ
000907157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b7$$kFZJ
000907157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b8$$kFZJ
000907157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b9$$kFZJ
000907157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich$$b10$$kFZJ
000907157 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b11$$kFZJ
000907157 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5222$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000907157 9141_ $$y2022
000907157 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907157 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-04-30T11:42:11Z
000907157 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-04-30T11:42:11Z
000907157 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907157 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2020-04-30T11:42:11Z
000907157 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000907157 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-23
000907157 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000907157 920__ $$lyes
000907157 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000907157 980__ $$ajournal
000907157 980__ $$aVDB
000907157 980__ $$aUNRESTRICTED
000907157 980__ $$aI:(DE-Juel1)PGI-9-20110106
000907157 9801_ $$aFullTexts