001     907157
005     20230123110612.0
024 7 _ |a 10.21468/SciPostPhysCore.5.1.017
|2 doi
024 7 _ |a 2128/31025
|2 Handle
024 7 _ |a WOS:000853259800017
|2 WOS
037 _ _ |a FZJ-2022-01870
041 _ _ |a English
100 1 _ |a Rosenbach, Daniel
|0 P:(DE-Juel1)167347
|b 0
|e Corresponding author
245 _ _ |a Gate-induced decoupling of surface and bulk state properties in selectively-deposited Bi$_2$Te$_3$ nanoribbons
260 _ _ |a Amsterdam
|c 2022
|b SciPost Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1649842076_25495
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Three-dimensional topological insulators (TIs) host helical Dirac surface states at the interface with a trivial insulator. In quasi-one-dimensional TI nanoribbon structures the wave function of surface charges extends phase-coherently along the perimeter of the nanoribbon, resulting in a quantization of transverse surface modes. Furthermore, as the inherent spin-momentum locking results in a Berry phase offset of π of self-interfering charge carriers an energy gap within the surface state dispersion appears and all states become spin-degenerate. We investigate and compare the magnetic field dependent surface state dispersion in selectively deposited Bi2Te3 TI micro- and nanoribbon structures by analysing the gate voltage dependent magnetoconductance at cryogenic temperatures. While in wide microribbon devices the field effect mainly changes the amount of bulk charges close to the top surface we identify coherent transverse surface states along the perimeter of the nanoribbon devices responding to a change in top gate potential. We quantify the energetic spacing in between these quantized transverse subbands by using an electrostatic model that treats an initial difference in charge carrier densities on the top and bottom surface as well as remaining bulk charges. In the gate voltage dependent transconductance we find oscillations that change their relative phase by π at half-integer values of the magnetic flux quantum applied coaxial to the nanoribbon, which is a signature for a magnetic flux dependent topological phase transition in narrow, selectively deposited TI nanoribbon devices.
536 _ _ |a 5222 - Exploratory Qubits (POF4-522)
|0 G:(DE-HGF)POF4-5222
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Moors, Kristof
|0 P:(DE-Juel1)180184
|b 1
|u fzj
700 1 _ |a Jalil, Abdur R.
|0 P:(DE-Juel1)171826
|b 2
|u fzj
700 1 _ |a Kölzer, Jonas
|0 P:(DE-Juel1)172619
|b 3
|u fzj
700 1 _ |a Zimmermann, Erik
|0 P:(DE-Juel1)176848
|b 4
|u fzj
700 1 _ |a Schubert, Jürgen
|0 P:(DE-Juel1)128631
|b 5
|u fzj
700 1 _ |a Karimzadah, Soraya
|0 P:(DE-Juel1)167340
|b 6
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 7
|u fzj
700 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 8
|u fzj
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 9
|u fzj
700 1 _ |a Lüth, Hans
|0 P:(DE-Juel1)128608
|b 10
|u fzj
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 11
|u fzj
773 _ _ |a 10.21468/SciPostPhysCore.5.1.017
|g Vol. 5, no. 1, p. 017
|0 PERI:(DE-600)3071450-3
|n 1
|p 017
|t SciPost Physics Core
|v 5
|y 2022
|x 2666-9366
856 4 _ |u https://juser.fz-juelich.de/record/907157/files/SciPostPhysCore_5_1_017.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907157
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180184
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171826
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172619
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)176848
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)165984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128608
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5222
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-04-30T11:42:11Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-04-30T11:42:11Z
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2020-04-30T11:42:11Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21