000907173 001__ 907173 000907173 005__ 20240708133927.0 000907173 0247_ $$2doi$$a10.1016/j.jcis.2022.03.077 000907173 0247_ $$2ISSN$$a0021-9797 000907173 0247_ $$2ISSN$$a1095-7103 000907173 0247_ $$2Handle$$a2128/31029 000907173 0247_ $$2altmetric$$aaltmetric:126413108 000907173 0247_ $$2pmid$$apmid:35398764 000907173 0247_ $$2WOS$$aWOS:000793364500008 000907173 037__ $$aFZJ-2022-01878 000907173 041__ $$aEnglish 000907173 082__ $$a540 000907173 1001_ $$0P:(DE-Juel1)179556$$aYang, Yuankai$$b0 000907173 245__ $$aThermodiffusion of ions in nanoconfined aqueous electrolytes 000907173 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2022 000907173 3367_ $$2DRIVER$$aarticle 000907173 3367_ $$2DataCite$$aOutput Types/Journal article 000907173 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1649846530_26039 000907173 3367_ $$2BibTeX$$aARTICLE 000907173 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000907173 3367_ $$00$$2EndNote$$aJournal Article 000907173 520__ $$aUnderstanding of thermal effects on ion transport in porous media is very important for environmental applications. The movement of ions along a temperature gradient is named thermophoresis or thermodiffusion. In nanoporous media, where the interaction of ions with solid–liquid interfaces has a significant influence on their migration, the theoretical understanding of thermodiffusion is still incomplete. Herein, we present experimental results for the thermodiffusion of cations in saturated nanoporous silica by the through-diffusion method. Both the experimental data and theoretical analysis indicate that the temperature-induced polarization of surface charges strongly influences ionic transport. Stated simply, the electric field in a liquid electrolyte confined in nanopores changes when the applied temperature gradients are altered, thereby affecting the motion of the nanoconfined ionic species. By applying an external temperature field, the gradient of the surface charge density leads to the charged aqueous species exhibiting strong temperature gradient-dependent electrophoretic mobility. When the thickness of the electrical double layer is comparable to the size of the nanopores, the theory used herein indicates that this kind of nonisothermal ionic mobility is up to one order of magnitude larger than classical thermophoretic mobility. This study improves the understanding of the underlying mechanisms that govern the transport of ions in nanoporous media, which could set the stage for diffusional metamaterials induced by specific thermal fields. 000907173 536__ $$0G:(DE-HGF)POF4-1411$$a1411 - Nuclear Waste Disposal (POF4-141)$$cPOF4-141$$fPOF IV$$x0 000907173 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000907173 7001_ $$0P:(DE-HGF)0$$aZhang, Xudong$$b1 000907173 7001_ $$0P:(DE-HGF)0$$aTian, Zhiguo$$b2 000907173 7001_ $$0P:(DE-Juel1)156511$$aDeissmann, Guido$$b3 000907173 7001_ $$0P:(DE-Juel1)130324$$aBosbach, Dirk$$b4 000907173 7001_ $$0P:(DE-HGF)0$$aLiang, Peng$$b5 000907173 7001_ $$0P:(DE-HGF)0$$aWang, Moran$$b6$$eCorresponding author 000907173 773__ $$0PERI:(DE-600)1469021-4$$a10.1016/j.jcis.2022.03.077$$gVol. 619, p. 331 - 338$$p331 - 338$$tJournal of colloid and interface science$$v619$$x0021-9797$$y2022 000907173 8564_ $$uhttps://juser.fz-juelich.de/record/907173/files/Yang_JCIS_2022rev.pdf$$yPublished on 2022-03-21. Available in OpenAccess from 2024-03-21. 000907173 909CO $$ooai:juser.fz-juelich.de:907173$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000907173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179556$$aForschungszentrum Jülich$$b0$$kFZJ 000907173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156511$$aForschungszentrum Jülich$$b3$$kFZJ 000907173 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130324$$aForschungszentrum Jülich$$b4$$kFZJ 000907173 9131_ $$0G:(DE-HGF)POF4-141$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1411$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vNukleare Entsorgung$$x0 000907173 9141_ $$y2022 000907173 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000907173 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000907173 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04 000907173 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04 000907173 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12 000907173 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12 000907173 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12 000907173 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12 000907173 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ COLLOID INTERF SCI : 2021$$d2022-11-12 000907173 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12 000907173 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12 000907173 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12 000907173 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ COLLOID INTERF SCI : 2021$$d2022-11-12 000907173 920__ $$lyes 000907173 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0 000907173 9801_ $$aFullTexts 000907173 980__ $$ajournal 000907173 980__ $$aVDB 000907173 980__ $$aUNRESTRICTED 000907173 980__ $$aI:(DE-Juel1)IEK-6-20101013 000907173 981__ $$aI:(DE-Juel1)IFN-2-20101013