001     907173
005     20240708133927.0
024 7 _ |a 10.1016/j.jcis.2022.03.077
|2 doi
024 7 _ |a 0021-9797
|2 ISSN
024 7 _ |a 1095-7103
|2 ISSN
024 7 _ |a 2128/31029
|2 Handle
024 7 _ |a altmetric:126413108
|2 altmetric
024 7 _ |a pmid:35398764
|2 pmid
024 7 _ |a WOS:000793364500008
|2 WOS
037 _ _ |a FZJ-2022-01878
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Yang, Yuankai
|0 P:(DE-Juel1)179556
|b 0
245 _ _ |a Thermodiffusion of ions in nanoconfined aqueous electrolytes
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1649846530_26039
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding of thermal effects on ion transport in porous media is very important for environmental applications. The movement of ions along a temperature gradient is named thermophoresis or thermodiffusion. In nanoporous media, where the interaction of ions with solid–liquid interfaces has a significant influence on their migration, the theoretical understanding of thermodiffusion is still incomplete. Herein, we present experimental results for the thermodiffusion of cations in saturated nanoporous silica by the through-diffusion method. Both the experimental data and theoretical analysis indicate that the temperature-induced polarization of surface charges strongly influences ionic transport. Stated simply, the electric field in a liquid electrolyte confined in nanopores changes when the applied temperature gradients are altered, thereby affecting the motion of the nanoconfined ionic species. By applying an external temperature field, the gradient of the surface charge density leads to the charged aqueous species exhibiting strong temperature gradient-dependent electrophoretic mobility. When the thickness of the electrical double layer is comparable to the size of the nanopores, the theory used herein indicates that this kind of nonisothermal ionic mobility is up to one order of magnitude larger than classical thermophoretic mobility. This study improves the understanding of the underlying mechanisms that govern the transport of ions in nanoporous media, which could set the stage for diffusional metamaterials induced by specific thermal fields.
536 _ _ |a 1411 - Nuclear Waste Disposal (POF4-141)
|0 G:(DE-HGF)POF4-1411
|c POF4-141
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Xudong
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tian, Zhiguo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Deissmann, Guido
|0 P:(DE-Juel1)156511
|b 3
700 1 _ |a Bosbach, Dirk
|0 P:(DE-Juel1)130324
|b 4
700 1 _ |a Liang, Peng
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wang, Moran
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.jcis.2022.03.077
|g Vol. 619, p. 331 - 338
|0 PERI:(DE-600)1469021-4
|p 331 - 338
|t Journal of colloid and interface science
|v 619
|y 2022
|x 0021-9797
856 4 _ |u https://juser.fz-juelich.de/record/907173/files/Yang_JCIS_2022rev.pdf
|y Published on 2022-03-21. Available in OpenAccess from 2024-03-21.
909 C O |o oai:juser.fz-juelich.de:907173
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179556
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156511
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130324
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Nukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)
|1 G:(DE-HGF)POF4-140
|0 G:(DE-HGF)POF4-141
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Nukleare Entsorgung
|9 G:(DE-HGF)POF4-1411
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J COLLOID INTERF SCI : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J COLLOID INTERF SCI : 2021
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21