001     907195
005     20230522125349.0
024 7 _ |a 10.3389/fmats.2022.851458
|2 doi
024 7 _ |a 2128/31031
|2 Handle
024 7 _ |a altmetric:125081348
|2 altmetric
024 7 _ |a WOS:000779181100001
|2 WOS
037 _ _ |a FZJ-2022-01883
082 _ _ |a 620
100 1 _ |a Redies, Matthias
|0 P:(DE-Juel1)172666
|b 0
245 _ _ |a Fast All-Electron Hybrid Functionals and Their Application to Rare-Earth Iron Garnets
260 _ _ |a Lausanne
|c 2022
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1649849325_25495
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Virtual materials design requires not only the simulation of a huge number of systems, but also of systems with ever larger sizes and through increasingly accurate models of the electronic structure. These can be provided by density functional theory (DFT) using not only simple local approximations to the unknown exchange and correlation functional, but also more complex approaches such as hybrid functionals, which include some part of Hartree–Fock exact exchange. While hybrid functionals allow many properties such as lattice constants, bond lengths, magnetic moments and band gaps, to be calculated with improved accuracy, they require the calculation of a nonlocal potential, resulting in high computational costs, that scale rapidly with the system size. This limits their wide application. Here, we present a new highly-scalable implementation of the nonlocal Hartree-Fock-type potential into FLEUR—an all-electron electronic structure code that implements the full-potential linearized augmented plane-wave (FLAPW) method. This implementation enables the use of hybrid functionals for systems with several hundred atoms. By porting this algorithm to GPU accelerators, we can leverage future exascale supercomputers which we demonstrate by reporting scaling results for up to 64 GPUs and up to 12,000 CPU cores for a single k-point. As proof of principle, we apply the algorithm to large and complex iron garnet materials (YIG, GdIG, TmIG) that are used in several spintronic applications.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Michalicek, Gregor
|0 P:(DE-Juel1)141860
|b 1
|u fzj
700 1 _ |a Bouaziz, Juba
|0 P:(DE-Juel1)157840
|b 2
|u fzj
700 1 _ |a Terboven, Christian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Müller, Matthias
|0 P:(DE-Juel1)159301
|b 4
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 5
|u fzj
700 1 _ |a Wortmann, Daniel
|0 P:(DE-Juel1)131042
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.3389/fmats.2022.851458
|g Vol. 9, p. 851458
|0 PERI:(DE-600)2759394-0
|p 851458
|t Frontiers in Materials
|v 9
|y 2022
|x 2296-8016
856 4 _ |u https://juser.fz-juelich.de/record/907195/files/fmats-09-851458.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907195
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)141860
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157840
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131042
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT MATER : 2021
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-21T05:39:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-21T05:39:59Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-21T05:39:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-26
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21