000907202 001__ 907202
000907202 005__ 20240625095039.0
000907202 0247_ $$2doi$$a10.1103/PhysRevLett.128.147701
000907202 0247_ $$2ISSN$$a0031-9007
000907202 0247_ $$2ISSN$$a1079-7114
000907202 0247_ $$2ISSN$$a1092-0145
000907202 0247_ $$2Handle$$a2128/31021
000907202 0247_ $$2pmid$$a35476482
000907202 0247_ $$2WOS$$aWOS:000793022900014
000907202 037__ $$aFZJ-2022-01890
000907202 082__ $$a530
000907202 1001_ $$00000-0002-3241-9987$$aHsu, Chunwei$$b0
000907202 245__ $$aMagnetic-Field Universality of the Kondo Effect Revealed by Thermocurrent Spectroscopy
000907202 260__ $$aCollege Park, Md.$$bAPS$$c2022
000907202 3367_ $$2DRIVER$$aarticle
000907202 3367_ $$2DataCite$$aOutput Types/Journal article
000907202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1649840813_5785
000907202 3367_ $$2BibTeX$$aARTICLE
000907202 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907202 3367_ $$00$$2EndNote$$aJournal Article
000907202 520__ $$aProbing the universal low-temperature magnetic-field scaling of Kondo-correlated quantum dots via electrical conductance has proved to be experimentally challenging. Here, we show how to probe this in nonlinear thermocurrent spectroscopy applied to a molecular quantum dot in the Kondo regime. Our results demonstrate that the bias-dependent thermocurrent is a sensitive probe of universal Kondo physics, directly measures the splitting of the Kondo resonance in a magnetic field, and opens up possibilities for investigating nanosystems far from thermal and electrical equilibrium.
000907202 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000907202 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907202 7001_ $$0P:(DE-Juel1)130600$$aCosti, Theodoulos$$b1
000907202 7001_ $$0P:(DE-Juel1)177935$$aVogel, David$$b2$$ufzj
000907202 7001_ $$00000-0002-6034-453X$$aWegeberg, Christina$$b3
000907202 7001_ $$00000-0002-8094-7813$$aMayor, Marcel$$b4
000907202 7001_ $$0P:(DE-HGF)0$$avan der Zant, Herre S. J.$$b5
000907202 7001_ $$0P:(DE-HGF)0$$aGehring, Pascal$$b6$$eCorresponding author
000907202 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.128.147701$$gVol. 128, no. 14, p. 147701$$n14$$p147701$$tPhysical review letters$$v128$$x0031-9007$$y2022
000907202 8564_ $$uhttps://juser.fz-juelich.de/record/907202/files/PhysRevLett.128.147701.pdf$$yOpenAccess
000907202 909CO $$ooai:juser.fz-juelich.de:907202$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130600$$aForschungszentrum Jülich$$b1$$kFZJ
000907202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177935$$aForschungszentrum Jülich$$b2$$kFZJ
000907202 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000907202 9141_ $$y2022
000907202 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000907202 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000907202 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-02
000907202 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000907202 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000907202 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000907202 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000907202 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000907202 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000907202 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907202 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-02-02
000907202 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2019$$d2021-02-02
000907202 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000907202 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2019$$d2021-02-02
000907202 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000907202 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000907202 920__ $$lyes
000907202 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000907202 9801_ $$aFullTexts
000907202 980__ $$ajournal
000907202 980__ $$aVDB
000907202 980__ $$aUNRESTRICTED
000907202 980__ $$aI:(DE-Juel1)IAS-3-20090406
000907202 981__ $$aI:(DE-Juel1)PGI-2-20110106