000907203 001__ 907203
000907203 005__ 20230522125349.0
000907203 0247_ $$2doi$$a10.1038/s41598-022-08140-0
000907203 0247_ $$2Handle$$a2128/31061
000907203 0247_ $$2WOS$$aWOS:000769065000026
000907203 037__ $$aFZJ-2022-01891
000907203 082__ $$a600
000907203 1001_ $$0P:(DE-Juel1)161196$$aMenzel, Miriam$$b0$$eCorresponding author$$ufzj
000907203 245__ $$aAutomated computation of nerve fibre inclinations from 3D polarised light imaging measurements of brain tissue
000907203 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2022
000907203 3367_ $$2DRIVER$$aarticle
000907203 3367_ $$2DataCite$$aOutput Types/Journal article
000907203 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1650626023_28914
000907203 3367_ $$2BibTeX$$aARTICLE
000907203 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907203 3367_ $$00$$2EndNote$$aJournal Article
000907203 520__ $$aThe method 3D polarised light imaging (3D-PLI) measures the birefringence of histological brain sections to determine the spatial course of nerve fibres (myelinated axons). While the in-plane fibre directions can be determined with high accuracy, the computation of the out-of-plane fibre inclinations is more challenging because they are derived from the amplitude of the birefringence signals, which depends e.g. on the amount of nerve fibres. One possibility to improve the accuracy is to consider the average transmitted light intensity (transmittance weighting). The current procedure requires effortful manual adjustment of parameters and anatomical knowledge. Here, we introduce an automated, optimised computation of the fibre inclinations, allowing for a much faster, reproducible determination of fibre orientations in 3D-PLI. Depending on the degree of myelination, the algorithm uses different models (transmittance-weighted, unweighted, or a linear combination), allowing to account for regionally specific behaviour. As the algorithm is parallelised and GPU optimised, it can be applied to large data sets. Moreover, it only uses images from standard 3D-PLI measurements without tilting, and can therefore be applied to existing data sets from previous measurements. The functionality is demonstrated on unstained coronal and sagittal histological sections of vervet monkey and rat brains.
000907203 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000907203 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000907203 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x2
000907203 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907203 7001_ $$0P:(DE-Juel1)167509$$aReuter, Jan A.$$b1$$ufzj
000907203 7001_ $$0P:(DE-Juel1)131642$$aGräßel, David$$b2$$ufzj
000907203 7001_ $$0P:(DE-HGF)0$$aCostantini, Irene$$b3
000907203 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b4$$ufzj
000907203 7001_ $$0P:(DE-Juel1)131632$$aAxer, Markus$$b5$$ufzj
000907203 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-022-08140-0$$gVol. 12, no. 1, p. 4328$$n1$$p4328$$tScientific reports$$v12$$x2045-2322$$y2022
000907203 8564_ $$uhttps://juser.fz-juelich.de/record/907203/files/MENZEL2022_ScientificReports_Automated-Computation-of-Nerve-Fibre-Inclinations-from-3D-PLI-Measurements-of-Brain-Tissue.pdf$$yOpenAccess
000907203 8767_ $$8SN-2022-00413-b$$92022-10-07$$a1200185158$$d2022-11-21$$eAPC$$jZahlung erfolgt$$lDEAL: Springer
000907203 909CO $$ooai:juser.fz-juelich.de:907203$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000907203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161196$$aForschungszentrum Jülich$$b0$$kFZJ
000907203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167509$$aForschungszentrum Jülich$$b1$$kFZJ
000907203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131642$$aForschungszentrum Jülich$$b2$$kFZJ
000907203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b4$$kFZJ
000907203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131632$$aForschungszentrum Jülich$$b5$$kFZJ
000907203 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000907203 9141_ $$y2022
000907203 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907203 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000907203 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000907203 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000907203 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000907203 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907203 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000907203 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000907203 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000907203 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-08T09:38:07Z
000907203 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-08T09:38:07Z
000907203 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-08T09:38:07Z
000907203 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000907203 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000907203 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000907203 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000907203 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000907203 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-09
000907203 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000907203 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907203 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907203 920__ $$lyes
000907203 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000907203 9801_ $$aFullTexts
000907203 980__ $$ajournal
000907203 980__ $$aVDB
000907203 980__ $$aUNRESTRICTED
000907203 980__ $$aI:(DE-Juel1)INM-1-20090406
000907203 980__ $$aAPC