001     907219
005     20240711114011.0
024 7 _ |a 10.1088/1741-4326/ac4776
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a 2128/31245
|2 Handle
024 7 _ |a altmetric:121954876
|2 altmetric
024 7 _ |a WOS:000749512200001
|2 WOS
037 _ _ |a FZJ-2022-01900
082 _ _ |a 620
100 1 _ |a Romazanov, J.
|0 P:(DE-Juel1)165905
|b 0
|e Corresponding author
245 _ _ |a Beryllium erosion and redeposition in ITER H, He and D–T discharges
260 _ _ |a Vienna
|c 2022
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654159191_11179
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Monte-Carlo code ERO2.0 was used to simulate steady-state erosion and transport of beryllium (Be) in the ITER main chamber. Various plasma scenarios were tested, including a variation of the main species (hydrogen, deuterium, helium), plasma conditions (density, temperature, flow velocity) and magnetic configurations. The study provides valuable predictions for the Be transport to the divertor, where it is expected to be an important contributor to dust formation and fuel retention due to build-up of co-deposited layers. The Be gross and net erosion rates provided by this study can help identifying first wall regions with potentially critical armour lifetime.
536 _ _ |a 134 - Plasma-Wand-Wechselwirkung (POF4-134)
|0 G:(DE-HGF)POF4-134
|c POF4-134
|f POF IV
|x 0
536 _ _ |a EUROfusion - Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium (633053)
|0 G:(EU-Grant)633053
|c 633053
|f EURATOM-Adhoc-2014-20
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kirschner, Andreas
|0 P:(DE-Juel1)2620
|b 1
|u fzj
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 2
700 1 _ |a Pitts, R. A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Borodin, D.
|0 P:(DE-Juel1)7884
|b 4
700 1 _ |a Rode, Sebastian
|0 P:(DE-Juel1)181062
|b 5
|u fzj
700 1 _ |a Navarro, M. X.
|0 P:(DE-Juel1)180204
|b 6
|u fzj
700 1 _ |a Schmid, K.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Veshchev, E.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Neverov, V. S.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kukushkin, A. B.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Alekseev, Alexey
|0 P:(DE-Juel1)169221
|b 11
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 12
773 _ _ |a 10.1088/1741-4326/ac4776
|g Vol. 62, no. 3, p. 036011 -
|0 PERI:(DE-600)2037980-8
|n 3
|p 036011 -
|t Nuclear fusion
|v 62
|y 2022
|x 0029-5515
856 4 _ |u https://juser.fz-juelich.de/record/907219/files/Invoice_8201795.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907219/files/Romazanov_2022_Nucl._Fusion_62_036011.pdf
909 C O |o oai:juser.fz-juelich.de:907219
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)2620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)7884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)181062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)180204
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Fusion
|1 G:(DE-HGF)POF4-130
|0 G:(DE-HGF)POF4-134
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Plasma-Wand-Wechselwirkung
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-09
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21