000907221 001__ 907221
000907221 005__ 20240506205522.0
000907221 0247_ $$2doi$$a10.3389/fceng.2022.826485
000907221 0247_ $$2Handle$$a2128/31032
000907221 0247_ $$2altmetric$$aaltmetric:125696886
000907221 0247_ $$2WOS$$aWOS:000994427700001
000907221 037__ $$aFZJ-2022-01902
000907221 082__ $$a540
000907221 1001_ $$0P:(DE-Juel1)174016$$aHo, Phuong$$b0$$ufzj
000907221 245__ $$aMicrofluidic Reproduction of Dynamic Bioreactor Environment Based on Computational Lifelines
000907221 260__ $$aLausanne$$bFrontiers Media$$c2022
000907221 3367_ $$2DRIVER$$aarticle
000907221 3367_ $$2DataCite$$aOutput Types/Journal article
000907221 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714996466_28930
000907221 3367_ $$2BibTeX$$aARTICLE
000907221 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907221 3367_ $$00$$2EndNote$$aJournal Article
000907221 520__ $$aThe biotechnological production of fine chemicals, proteins and pharmaceuticals is usually hampered by loss of microbial performance during scale-up. This challenge is mainly caused by discrepancies between homogeneous environmental conditions at laboratory scale, where bioprocesses are optimized, and inhomogeneous conditions in large-scale bioreactors, where production takes place. Therefore, to improve strain selection and process development, it is of great interest to characterize these fluctuating conditions at large-scale and to study their effects on microbial cells. In this paper, we demonstrate the potential of computational fluid dynamics (CFD) simulation of large-scale bioreactors combined with dynamic microfluidic single-cell cultivation (dMSCC). Environmental conditions in a 200 L bioreactor were characterized with CFD simulations. Computational lifelines were determined by combining simulated turbulent multiphase flow, mass transport and particle tracing. Glucose availability for Corynebacterium glutamicum cells was determined. The reactor was simulated with average glucose concentrations of 6 g m−3, 10 g m−3 and 16 g m−3. The resulting computational lifelines, discretized into starvation and abundance regimes, were used as feed profiles for the dMSCC to investigate how varying glucose concentration affects cell physiology and growth rate. In this study, each colony in the dMSCC device represents a single cell as it travels through the reactor. Under oscillating conditions reproduced in the dMSCC device, a decrease in growth rate of about 40% was observed compared to continuous supply with the same average glucose availability. The presented approach provides insights into environmental conditions observed by microorganisms in large-scale bioreactors. It also paves the way for an improved understanding of how inhomogeneous environmental conditions influence cellular physiology, growth and production.
000907221 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000907221 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907221 7001_ $$0P:(DE-HGF)0$$aTäuber, Sarah$$b1
000907221 7001_ $$0P:(DE-Juel1)128523$$aStute, Birgit$$b2$$ufzj
000907221 7001_ $$0P:(DE-Juel1)143612$$aGrünberger, Alexander$$b3$$eCorresponding author
000907221 7001_ $$0P:(DE-Juel1)129081$$avon Lieres, Eric$$b4$$eCorresponding author$$ufzj
000907221 773__ $$0PERI:(DE-600)3017796-0$$a10.3389/fceng.2022.826485$$gVol. 4, p. 826485$$p826485$$tFrontiers in chemical engineering$$v4$$x2673-2718$$y2022
000907221 8564_ $$uhttps://juser.fz-juelich.de/record/907221/files/fceng-04-826485.pdf$$yOpenAccess
000907221 8767_ $$d2022-12-19$$eAPC$$jDeposit$$lDeposit: Frontiers$$z977,50 USD
000907221 909CO $$ooai:juser.fz-juelich.de:907221$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popenaire$$pOpenAPC$$popen_access
000907221 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174016$$aForschungszentrum Jülich$$b0$$kFZJ
000907221 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128523$$aForschungszentrum Jülich$$b2$$kFZJ
000907221 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129081$$aForschungszentrum Jülich$$b4$$kFZJ
000907221 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000907221 9141_ $$y2022
000907221 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000907221 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000907221 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000907221 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907221 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907221 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000907221 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-13T10:37:49Z
000907221 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
000907221 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
000907221 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-13T10:37:49Z
000907221 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-13T10:37:49Z
000907221 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-13T10:37:49Z
000907221 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-05-13T10:37:49Z
000907221 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
000907221 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-08-29
000907221 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
000907221 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000907221 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000907221 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000907221 980__ $$ajournal
000907221 980__ $$aVDB
000907221 980__ $$aI:(DE-Juel1)IBG-1-20101118
000907221 980__ $$aAPC
000907221 980__ $$aUNRESTRICTED
000907221 9801_ $$aAPC
000907221 9801_ $$aFullTexts