000907222 001__ 907222
000907222 005__ 20230123110613.0
000907222 0247_ $$2doi$$a10.1109/JEDS.2022.3166449
000907222 0247_ $$2Handle$$a2128/31702
000907222 0247_ $$2WOS$$aWOS:000836630300003
000907222 037__ $$aFZJ-2022-01903
000907222 082__ $$a621.3
000907222 1001_ $$0P:(DE-Juel1)176844$$aXi, Fengben$$b0$$ufzj
000907222 245__ $$aFour-Terminal Ferroelectric Schottky Barrier Field Effect Transistors as Artificial Synapses for Neuromorphic Applications
000907222 260__ $$a[New York, NY]$$bIEEE$$c2022
000907222 3367_ $$2DRIVER$$aarticle
000907222 3367_ $$2DataCite$$aOutput Types/Journal article
000907222 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661254488_26173
000907222 3367_ $$2BibTeX$$aARTICLE
000907222 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907222 3367_ $$00$$2EndNote$$aJournal Article
000907222 520__ $$aIn this paper, artificial synapses based on four terminal ferroelectric Schottky barrier field effect transistors (FE-SBFETs) are experimentally demonstrated. The ferroelectric polarization switching dynamics gradually modulate the Schottky barriers, thus programming the device conductance by applying negative or postive pulses to imitate the excitation and inhibition behaviors of the biological synapse. The excitatory post-synaptic current can be modulated by the back-gate bias, enabling the reconfiguration of the weight profile with high speed of 20 ns and low energy (< 1 fJ/spike) consumption. Besides, the tunable long term potentiation and depression show high endurance and very small cycle-to-cycle variations. Based on the good linearity, high symmetricity and large dynamic range of the synaptic weight updates, a high recognition accuracy (92.6%) is achieved for handwritten digits by multilayer perceptron artificial neural networks. These findings demonstrate FE-SBFET has high potential as an ideal synaptic component for the future intelligent neuromorphic network.
000907222 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000907222 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907222 7001_ $$0P:(DE-Juel1)176845$$aHan, Yi$$b1$$ufzj
000907222 7001_ $$0P:(DE-Juel1)188135$$aGrenmyr, Andreas$$b2$$ufzj
000907222 7001_ $$0P:(DE-Juel1)125588$$aGrutzmacher, Detlev$$b3$$ufzj
000907222 7001_ $$0P:(DE-Juel1)128649$$aZhao, Qing-Tai$$b4$$ufzj
000907222 773__ $$0PERI:(DE-600)2696552-5$$a10.1109/JEDS.2022.3166449$$gp. 1 - 1$$p569-574$$tIEEE journal of the Electron Devices Society$$v10$$x2168-6734$$y2022
000907222 8564_ $$uhttps://juser.fz-juelich.de/record/907222/files/Invoice_APC600307270.pdf
000907222 8564_ $$uhttps://juser.fz-juelich.de/record/907222/files/Four-Terminal_Ferroelectric_Schottky_Barrier_Field_Effect_Transistors_as_Artificial_Synapses_for_Neuromorphic_Applications.pdf$$yOpenAccess
000907222 8767_ $$8APC600307270$$92022-04-12$$a1200180268$$d2022-04-19$$eAPC$$jZahlung erfolgt$$zUSD 1350,-
000907222 909CO $$ooai:juser.fz-juelich.de:907222$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000907222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176844$$aForschungszentrum Jülich$$b0$$kFZJ
000907222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176845$$aForschungszentrum Jülich$$b1$$kFZJ
000907222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188135$$aForschungszentrum Jülich$$b2$$kFZJ
000907222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b3$$kFZJ
000907222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128649$$aForschungszentrum Jülich$$b4$$kFZJ
000907222 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000907222 9141_ $$y2022
000907222 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-30
000907222 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907222 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000907222 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-30
000907222 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907222 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-30
000907222 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000907222 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J ELECTRON DEVI : 2021$$d2022-11-19
000907222 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000907222 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-15T11:04:44Z
000907222 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-15T11:04:44Z
000907222 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-15T11:04:44Z
000907222 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000907222 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-19
000907222 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000907222 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-19
000907222 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000907222 980__ $$ajournal
000907222 980__ $$aVDB
000907222 980__ $$aUNRESTRICTED
000907222 980__ $$aI:(DE-Juel1)PGI-9-20110106
000907222 980__ $$aAPC
000907222 9801_ $$aAPC
000907222 9801_ $$aFullTexts