Hauptseite > Publikationsdatenbank > Four-Terminal Ferroelectric Schottky Barrier Field Effect Transistors as Artificial Synapses for Neuromorphic Applications > print |
001 | 907222 | ||
005 | 20230123110613.0 | ||
024 | 7 | _ | |a 10.1109/JEDS.2022.3166449 |2 doi |
024 | 7 | _ | |a 2128/31702 |2 Handle |
024 | 7 | _ | |a WOS:000836630300003 |2 WOS |
037 | _ | _ | |a FZJ-2022-01903 |
082 | _ | _ | |a 621.3 |
100 | 1 | _ | |a Xi, Fengben |0 P:(DE-Juel1)176844 |b 0 |u fzj |
245 | _ | _ | |a Four-Terminal Ferroelectric Schottky Barrier Field Effect Transistors as Artificial Synapses for Neuromorphic Applications |
260 | _ | _ | |a [New York, NY] |c 2022 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1661254488_26173 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this paper, artificial synapses based on four terminal ferroelectric Schottky barrier field effect transistors (FE-SBFETs) are experimentally demonstrated. The ferroelectric polarization switching dynamics gradually modulate the Schottky barriers, thus programming the device conductance by applying negative or postive pulses to imitate the excitation and inhibition behaviors of the biological synapse. The excitatory post-synaptic current can be modulated by the back-gate bias, enabling the reconfiguration of the weight profile with high speed of 20 ns and low energy (< 1 fJ/spike) consumption. Besides, the tunable long term potentiation and depression show high endurance and very small cycle-to-cycle variations. Based on the good linearity, high symmetricity and large dynamic range of the synaptic weight updates, a high recognition accuracy (92.6%) is achieved for handwritten digits by multilayer perceptron artificial neural networks. These findings demonstrate FE-SBFET has high potential as an ideal synaptic component for the future intelligent neuromorphic network. |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Han, Yi |0 P:(DE-Juel1)176845 |b 1 |u fzj |
700 | 1 | _ | |a Grenmyr, Andreas |0 P:(DE-Juel1)188135 |b 2 |u fzj |
700 | 1 | _ | |a Grutzmacher, Detlev |0 P:(DE-Juel1)125588 |b 3 |u fzj |
700 | 1 | _ | |a Zhao, Qing-Tai |0 P:(DE-Juel1)128649 |b 4 |u fzj |
773 | _ | _ | |a 10.1109/JEDS.2022.3166449 |g p. 1 - 1 |0 PERI:(DE-600)2696552-5 |p 569-574 |t IEEE journal of the Electron Devices Society |v 10 |y 2022 |x 2168-6734 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/907222/files/Invoice_APC600307270.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/907222/files/Four-Terminal_Ferroelectric_Schottky_Barrier_Field_Effect_Transistors_as_Artificial_Synapses_for_Neuromorphic_Applications.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:907222 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176844 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)176845 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)188135 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)128649 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2021-01-30 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-30 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE J ELECTRON DEVI : 2021 |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-01-15T11:04:44Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-01-15T11:04:44Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-01-15T11:04:44Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-19 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-19 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-19 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|