001     907222
005     20230123110613.0
024 7 _ |a 10.1109/JEDS.2022.3166449
|2 doi
024 7 _ |a 2128/31702
|2 Handle
024 7 _ |a WOS:000836630300003
|2 WOS
037 _ _ |a FZJ-2022-01903
082 _ _ |a 621.3
100 1 _ |a Xi, Fengben
|0 P:(DE-Juel1)176844
|b 0
|u fzj
245 _ _ |a Four-Terminal Ferroelectric Schottky Barrier Field Effect Transistors as Artificial Synapses for Neuromorphic Applications
260 _ _ |a [New York, NY]
|c 2022
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661254488_26173
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper, artificial synapses based on four terminal ferroelectric Schottky barrier field effect transistors (FE-SBFETs) are experimentally demonstrated. The ferroelectric polarization switching dynamics gradually modulate the Schottky barriers, thus programming the device conductance by applying negative or postive pulses to imitate the excitation and inhibition behaviors of the biological synapse. The excitatory post-synaptic current can be modulated by the back-gate bias, enabling the reconfiguration of the weight profile with high speed of 20 ns and low energy (< 1 fJ/spike) consumption. Besides, the tunable long term potentiation and depression show high endurance and very small cycle-to-cycle variations. Based on the good linearity, high symmetricity and large dynamic range of the synaptic weight updates, a high recognition accuracy (92.6%) is achieved for handwritten digits by multilayer perceptron artificial neural networks. These findings demonstrate FE-SBFET has high potential as an ideal synaptic component for the future intelligent neuromorphic network.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Han, Yi
|0 P:(DE-Juel1)176845
|b 1
|u fzj
700 1 _ |a Grenmyr, Andreas
|0 P:(DE-Juel1)188135
|b 2
|u fzj
700 1 _ |a Grutzmacher, Detlev
|0 P:(DE-Juel1)125588
|b 3
|u fzj
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 4
|u fzj
773 _ _ |a 10.1109/JEDS.2022.3166449
|g p. 1 - 1
|0 PERI:(DE-600)2696552-5
|p 569-574
|t IEEE journal of the Electron Devices Society
|v 10
|y 2022
|x 2168-6734
856 4 _ |u https://juser.fz-juelich.de/record/907222/files/Invoice_APC600307270.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/907222/files/Four-Terminal_Ferroelectric_Schottky_Barrier_Field_Effect_Transistors_as_Artificial_Synapses_for_Neuromorphic_Applications.pdf
909 C O |o oai:juser.fz-juelich.de:907222
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176844
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176845
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188135
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128649
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J ELECTRON DEVI : 2021
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-15T11:04:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-15T11:04:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-15T11:04:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-19
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-19
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21