001     907230
005     20240711092309.0
024 7 _ |a 10.3390/min12020121
|2 doi
024 7 _ |a 2128/31022
|2 Handle
024 7 _ |a WOS:000762288700001
|2 WOS
037 _ _ |a FZJ-2022-01909
082 _ _ |a 550
100 1 _ |a Alkan, Gözde
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Assessment of Metallurgical Slags as Solar Heat Absorber Particles
260 _ _ |a Basel
|c 2022
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670313417_6446
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The use of ceramic solid particle technology in TES-integrated CSP plants offers a high solar-to-electricity ratio and enhanced storage densities, thanks to their high operational temperatures and wide temperature ranges. Metallurgical slags with composition similar to that of the state-of-art bauxite particles can be used as a sustainable and economical secondary raw material to prepare solid particles. In this study, the as-received state and the high-temperature phase and microstructural changes of two fayalite slags from copper and lead production were elucidated by XRD and SEM/EDS methods in a comparative manner. Solid particles were prepared from slags by the oil dropping method, with subsequent heat treatment. Solar-thermal-application-related functional properties of slag particles, such as heat capacity, absorptance, and thermophysical properties, were evaluated by differential scanning calorimetry (DSC), spectrophotometer, heating microscope, and high-temperature compressive tests, respectively. Owing to the formation of more stable Fe-rich phase components and less amount of glassy phase, copper slag is found to be a more promising secondary resource than lead slag in terms of material and functional properties
536 _ _ |a 1243 - Thermal Energy Storage (POF4-124)
|0 G:(DE-HGF)POF4-1243
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mechnich, Peter
|0 0000-0003-4689-8197
|b 1
700 1 _ |a Lucas, Hugo
|0 0000-0002-4224-3153
|b 2
700 1 _ |a Knoblauch, Nicole
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sommerfeld, Marcus
|0 0000-0002-1560-6350
|b 4
700 1 _ |a Flucht, Ferdinand
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pernpeintner, Johannes
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Sergeev, Dmitry
|0 P:(DE-Juel1)159377
|b 7
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 8
700 1 _ |a Friedrich, Bernd
|0 0000-0002-2934-2034
|b 9
773 _ _ |a 10.3390/min12020121
|g Vol. 12, no. 2, p. 121 -
|0 PERI:(DE-600)2655947-X
|n 2
|p 121 -
|t Minerals
|v 12
|y 2022
|x 2075-163X
856 4 _ |u https://juser.fz-juelich.de/record/907230/files/minerals-12-00121.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907230
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)159377
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129765
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1243
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MINERALS-BASEL : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-26T14:37:00Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-26T14:37:00Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-26T14:37:00Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-16
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21