Home > Publications database > Assessment of Metallurgical Slags as Solar Heat Absorber Particles > print |
001 | 907230 | ||
005 | 20240711092309.0 | ||
024 | 7 | _ | |a 10.3390/min12020121 |2 doi |
024 | 7 | _ | |a 2128/31022 |2 Handle |
024 | 7 | _ | |a WOS:000762288700001 |2 WOS |
037 | _ | _ | |a FZJ-2022-01909 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Alkan, Gözde |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Assessment of Metallurgical Slags as Solar Heat Absorber Particles |
260 | _ | _ | |a Basel |c 2022 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1670313417_6446 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The use of ceramic solid particle technology in TES-integrated CSP plants offers a high solar-to-electricity ratio and enhanced storage densities, thanks to their high operational temperatures and wide temperature ranges. Metallurgical slags with composition similar to that of the state-of-art bauxite particles can be used as a sustainable and economical secondary raw material to prepare solid particles. In this study, the as-received state and the high-temperature phase and microstructural changes of two fayalite slags from copper and lead production were elucidated by XRD and SEM/EDS methods in a comparative manner. Solid particles were prepared from slags by the oil dropping method, with subsequent heat treatment. Solar-thermal-application-related functional properties of slag particles, such as heat capacity, absorptance, and thermophysical properties, were evaluated by differential scanning calorimetry (DSC), spectrophotometer, heating microscope, and high-temperature compressive tests, respectively. Owing to the formation of more stable Fe-rich phase components and less amount of glassy phase, copper slag is found to be a more promising secondary resource than lead slag in terms of material and functional properties |
536 | _ | _ | |a 1243 - Thermal Energy Storage (POF4-124) |0 G:(DE-HGF)POF4-1243 |c POF4-124 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Mechnich, Peter |0 0000-0003-4689-8197 |b 1 |
700 | 1 | _ | |a Lucas, Hugo |0 0000-0002-4224-3153 |b 2 |
700 | 1 | _ | |a Knoblauch, Nicole |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Sommerfeld, Marcus |0 0000-0002-1560-6350 |b 4 |
700 | 1 | _ | |a Flucht, Ferdinand |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Pernpeintner, Johannes |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Sergeev, Dmitry |0 P:(DE-Juel1)159377 |b 7 |
700 | 1 | _ | |a Müller, Michael |0 P:(DE-Juel1)129765 |b 8 |
700 | 1 | _ | |a Friedrich, Bernd |0 0000-0002-2934-2034 |b 9 |
773 | _ | _ | |a 10.3390/min12020121 |g Vol. 12, no. 2, p. 121 - |0 PERI:(DE-600)2655947-X |n 2 |p 121 - |t Minerals |v 12 |y 2022 |x 2075-163X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/907230/files/minerals-12-00121.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:907230 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)159377 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)129765 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-124 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Hochtemperaturtechnologien |9 G:(DE-HGF)POF4-1243 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MINERALS-BASEL : 2021 |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-08-26T14:37:00Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-08-26T14:37:00Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-08-26T14:37:00Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-16 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-16 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-16 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-2-20101013 |k IEK-2 |l Werkstoffstruktur und -eigenschaften |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-2-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|