000907231 001__ 907231
000907231 005__ 20240711092309.0
000907231 0247_ $$2doi$$a10.1515/htmp-2022-0011
000907231 0247_ $$2ISSN$$a0334-6455
000907231 0247_ $$2ISSN$$a2191-0324
000907231 0247_ $$2Handle$$a2128/31027
000907231 0247_ $$2WOS$$aWOS:000764259500001
000907231 037__ $$aFZJ-2022-01910
000907231 082__ $$a670
000907231 1001_ $$0P:(DE-HGF)0$$aHoseinpur, Arman$$b0$$eCorresponding author
000907231 245__ $$aBoron Removal From Silicon Melt by Gas Blowing Technique
000907231 260__ $$aBerlin$$bde Gruyter$$c2022
000907231 3367_ $$2DRIVER$$aarticle
000907231 3367_ $$2DataCite$$aOutput Types/Journal article
000907231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670313507_28734
000907231 3367_ $$2BibTeX$$aARTICLE
000907231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907231 3367_ $$00$$2EndNote$$aJournal Article
000907231 520__ $$aDue to the detrimental effects of boron (B) on the efficiency of silicon (Si) photovoltaic cells, complete boron removal from Si is necessary to produce solar grade Si (SoG–Si, with a maximum limit of 0.1 ppmw boron). Gas refining is a promising technique for boron removal from Si, in which the thermodynamic equilibrium never establishes. Hence, by starting from any B concentration in the melt, the required limit for SoG–Si will be achieved. This research is devoted to studying the refractory interactions’ effect with melt and the chamber atmosphere on boron removal. For this purpose, gas refining experiments were carried out in alumina and graphite crucibles with H2 and H2–3% H2O refining gases. Gas refining in Ar, He, and continuous vacuuming conditions were also carried out to study the effect of chamber atmosphere. The gas refining results are supported by the characterization of the evaporated species by molecular beam mass spectroscopy (MBMS) technique. The MBMS measurements indicated that the boron evaporation occurs by the formation of the volatile species BH x , BO y , and B z H x O y compounds. Most of these compounds are already known in the literature. However, HBO, HBOH, and AlBO (in the case of alumina refractories) were measured experimentally in this work. Results indicate that the evaporation of B in the form of AlBO x compounds leads to higher mass transfer coefficients for boron removal in alumina crucibles. Density-functional theory (DFT) and coupled cluster calculations are carried out to provide a thermodynamic database for the gaseous compounds in the H–B–O–Al system, including enthalpy, entropy, and C P values for 21 compounds.
000907231 536__ $$0G:(DE-HGF)POF4-1243$$a1243 - Thermal Energy Storage (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000907231 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907231 7001_ $$0P:(DE-HGF)0$$aAndersson, Stefan$$b1
000907231 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b2
000907231 7001_ $$0P:(DE-HGF)0$$aTang, Kai$$b3
000907231 7001_ $$0P:(DE-HGF)0$$aSafarian, Jafar$$b4
000907231 773__ $$0PERI:(DE-600)2602423-8$$a10.1515/htmp-2022-0011$$gVol. 41, no. 1, p. 69 - 91$$n1$$p69 - 91$$tHigh temperature materials and processes$$v41$$x0334-6455$$y2022
000907231 8564_ $$uhttps://juser.fz-juelich.de/record/907231/files/10.1515_htmp-2022-0011.pdf$$yOpenAccess
000907231 8564_ $$uhttps://juser.fz-juelich.de/record/907231/files/Boron%20Removal%20from%20Silicon%20Melt%20-%20Hoseinpur.pdf$$yOpenAccess
000907231 909CO $$ooai:juser.fz-juelich.de:907231$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b2$$kFZJ
000907231 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1243$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000907231 9141_ $$y2022
000907231 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907231 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000907231 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000907231 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907231 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000907231 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000907231 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-05$$wger
000907231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-05
000907231 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-03T18:56:16Z
000907231 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-03T18:56:16Z
000907231 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double blind peer review$$d2022-09-03T18:56:16Z
000907231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-05
000907231 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-05
000907231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-05
000907231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHIGH TEMP MAT PR-ISR : 2021$$d2022-11-05
000907231 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-05
000907231 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000907231 9801_ $$aFullTexts
000907231 980__ $$ajournal
000907231 980__ $$aVDB
000907231 980__ $$aI:(DE-Juel1)IEK-2-20101013
000907231 980__ $$aUNRESTRICTED
000907231 981__ $$aI:(DE-Juel1)IMD-1-20101013