001     907231
005     20240711092309.0
024 7 _ |a 10.1515/htmp-2022-0011
|2 doi
024 7 _ |a 0334-6455
|2 ISSN
024 7 _ |a 2191-0324
|2 ISSN
024 7 _ |a 2128/31027
|2 Handle
024 7 _ |a WOS:000764259500001
|2 WOS
037 _ _ |a FZJ-2022-01910
082 _ _ |a 670
100 1 _ |a Hoseinpur, Arman
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Boron Removal From Silicon Melt by Gas Blowing Technique
260 _ _ |a Berlin
|c 2022
|b de Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670313507_28734
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Due to the detrimental effects of boron (B) on the efficiency of silicon (Si) photovoltaic cells, complete boron removal from Si is necessary to produce solar grade Si (SoG–Si, with a maximum limit of 0.1 ppmw boron). Gas refining is a promising technique for boron removal from Si, in which the thermodynamic equilibrium never establishes. Hence, by starting from any B concentration in the melt, the required limit for SoG–Si will be achieved. This research is devoted to studying the refractory interactions’ effect with melt and the chamber atmosphere on boron removal. For this purpose, gas refining experiments were carried out in alumina and graphite crucibles with H2 and H2–3% H2O refining gases. Gas refining in Ar, He, and continuous vacuuming conditions were also carried out to study the effect of chamber atmosphere. The gas refining results are supported by the characterization of the evaporated species by molecular beam mass spectroscopy (MBMS) technique. The MBMS measurements indicated that the boron evaporation occurs by the formation of the volatile species BH x , BO y , and B z H x O y compounds. Most of these compounds are already known in the literature. However, HBO, HBOH, and AlBO (in the case of alumina refractories) were measured experimentally in this work. Results indicate that the evaporation of B in the form of AlBO x compounds leads to higher mass transfer coefficients for boron removal in alumina crucibles. Density-functional theory (DFT) and coupled cluster calculations are carried out to provide a thermodynamic database for the gaseous compounds in the H–B–O–Al system, including enthalpy, entropy, and C P values for 21 compounds.
536 _ _ |a 1243 - Thermal Energy Storage (POF4-124)
|0 G:(DE-HGF)POF4-1243
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Andersson, Stefan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Müller, Michael
|0 P:(DE-Juel1)129765
|b 2
700 1 _ |a Tang, Kai
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Safarian, Jafar
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1515/htmp-2022-0011
|g Vol. 41, no. 1, p. 69 - 91
|0 PERI:(DE-600)2602423-8
|n 1
|p 69 - 91
|t High temperature materials and processes
|v 41
|y 2022
|x 0334-6455
856 4 _ |u https://juser.fz-juelich.de/record/907231/files/10.1515_htmp-2022-0011.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/907231/files/Boron%20Removal%20from%20Silicon%20Melt%20-%20Hoseinpur.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:907231
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129765
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1243
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-03T18:56:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-03T18:56:16Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double blind peer review
|d 2022-09-03T18:56:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HIGH TEMP MAT PR-ISR : 2021
|d 2022-11-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-05
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21