000907233 001__ 907233
000907233 005__ 20240711092309.0
000907233 0247_ $$2doi$$a10.1007/s11663-022-02445-1
000907233 0247_ $$2ISSN$$a0360-2141
000907233 0247_ $$2ISSN$$a1073-5615
000907233 0247_ $$2ISSN$$a1543-1916
000907233 0247_ $$2ISSN$$a2379-0229
000907233 0247_ $$2Handle$$a2128/31020
000907233 0247_ $$2WOS$$aWOS:000754127400001
000907233 037__ $$aFZJ-2022-01912
000907233 082__ $$a660
000907233 1001_ $$0P:(DE-HGF)0$$aHoseinpur, Arman$$b0$$eCorresponding author
000907233 245__ $$aOn the Phosphorus Evaporation from Liquid Silicon by Knudsen Effusion Mass Spectrometry
000907233 260__ $$aNew York, NY$$bSpringer Sciences & Business Media$$c2022
000907233 3367_ $$2DRIVER$$aarticle
000907233 3367_ $$2DataCite$$aOutput Types/Journal article
000907233 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670313247_6308
000907233 3367_ $$2BibTeX$$aARTICLE
000907233 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907233 3367_ $$00$$2EndNote$$aJournal Article
000907233 520__ $$aSilicon refining for solar applications is intensively on demand, and removal of phosphorus from Si is one of the most challenging steps. Evaporation of P from liquid Si in a vacuum refining process is the most efficient method for P removal from Si, and this research deals with the insight mechanisms of P evaporation from liquid Si. In this research, the gaseous species evaporating from the dilute liquid solutions of phosphorus in silicon were studied experimentally, and it was shown that phosphorus evaporates in the form of P, P2, P4, P3, SiP, Si2P, Si3P, and SiP2 at elevated temperatures. Except P and P2, the other molecules were detected experimentally for the first time, and Si3P was detected as a new compound in the gas phase. Knudsen effusion mass spectrometry technique was applied to characterize the evaporation of phosphorus from liquid Si samples containing 100, 1250, and 3000 ppmw phosphorus. The evaporation of phosphorus from liquid Si was studied by isothermal and polythermal experiments, up to 1840 °C. The vapor pressures of various P-containing molecules (P, P2, P4, SiP, Si2P) at 1442 °C were measured as a function of phosphorus fraction in liquid silicon. Results indicated that a major part of the phosphorus evaporates in the form of silicon phosphides and P4, especially when the sample temperature exceeds 1750 °C. When initial phosphorus was 100 ppmw, about 71 pct of phosphorus evaporation was by means of silicon phosphides and P4. The mechanisms of phosphorus evaporation from liquid Si are proposed, which depend on the melt composition and temperature. It occurs through phosphorus species evaporation independently or via the decomposition of transient silicon phosphides at the surface or through the direct evaporation of silicon phosphides at the melt surface.
000907233 536__ $$0G:(DE-HGF)POF4-1243$$a1243 - Thermal Energy Storage (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000907233 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907233 7001_ $$0P:(DE-Juel1)159377$$aSergeev, Dmitry$$b1
000907233 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b2
000907233 7001_ $$0P:(DE-HGF)0$$aSafarian, Jafar$$b3
000907233 773__ $$0PERI:(DE-600)2037524-4$$a10.1007/s11663-022-02445-1$$gVol. 53, no. 2, p. 1066 - 1081$$n2$$p1066 - 1081$$tMetallurgical and materials transactions / B$$v53$$x0360-2141$$y2022
000907233 8564_ $$uhttps://juser.fz-juelich.de/record/907233/files/Hoseinpur2022_Article_OnThePhosphorusEvaporationFrom.pdf$$yOpenAccess
000907233 8564_ $$uhttps://juser.fz-juelich.de/record/907233/files/On%20the%20phoshorus%20evaporation%20-%20Hoseinpur.pdf$$yOpenAccess
000907233 909CO $$ooai:juser.fz-juelich.de:907233$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907233 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159377$$aForschungszentrum Jülich$$b1$$kFZJ
000907233 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b2$$kFZJ
000907233 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1243$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000907233 9141_ $$y2022
000907233 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907233 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000907233 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger
000907233 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907233 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000907233 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-13$$wger
000907233 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-13
000907233 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-13
000907233 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-13
000907233 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-13
000907233 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000907233 9801_ $$aFullTexts
000907233 980__ $$ajournal
000907233 980__ $$aVDB
000907233 980__ $$aI:(DE-Juel1)IEK-2-20101013
000907233 980__ $$aUNRESTRICTED
000907233 981__ $$aI:(DE-Juel1)IMD-1-20101013