000907238 001__ 907238
000907238 005__ 20240711092309.0
000907238 0247_ $$2doi$$a10.1557/mrc.2019.93
000907238 0247_ $$2ISSN$$a2159-6859
000907238 0247_ $$2ISSN$$a2159-6867
000907238 0247_ $$2Handle$$a2128/31030
000907238 0247_ $$2altmetric$$aaltmetric:63384608
000907238 0247_ $$2WOS$$aWOS:000488237800036
000907238 037__ $$aFZJ-2022-01917
000907238 082__ $$a670
000907238 1001_ $$0P:(DE-HGF)0$$aGola, Adrien$$b0
000907238 245__ $$aSurface Flaws Control Strain Localization in the Deformation of Cu|Au Nanolaminate Pillars
000907238 260__ $$aCambridge$$bCambridge Univ. Press$$c2019
000907238 3367_ $$2DRIVER$$aarticle
000907238 3367_ $$2DataCite$$aOutput Types/Journal article
000907238 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714644278_23148
000907238 3367_ $$2BibTeX$$aARTICLE
000907238 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907238 3367_ $$00$$2EndNote$$aJournal Article
000907238 520__ $$aThe authors carried out matched experiments and molecular dynamics simulations of the compression of nanopillars prepared from Cu|Au nanolaminates with up to 25 nm layer thickness. The stress–strain behaviors obtained from both techniques are in excellent agreement. Variation in the layer thickness reveals an increase in the strength with a decreasing layer thickness. Pillars fail through the formation of shear bands whose nucleation they trace back to the existence of surface flaws. This combined approach demonstrates the crucial role of contact geometry in controlling the deformation mode and suggests that modulus-matched nanolaminates should be able to suppress strain localization while maintaining controllable strength.
000907238 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000907238 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907238 7001_ $$0P:(DE-HGF)0$$aZhang, Guang-Ping$$b1
000907238 7001_ $$0P:(DE-HGF)0$$aPastewka, Lars$$b2$$eCorresponding author
000907238 7001_ $$0P:(DE-Juel1)179598$$aSchwaiger, Ruth$$b3
000907238 773__ $$0PERI:(DE-600)2645443-9$$a10.1557/mrc.2019.93$$gVol. 9, no. 3, p. 1067 - 1071$$n3$$p1067 - 1071$$tMRS communications$$v9$$x2159-6859$$y2019
000907238 8564_ $$uhttps://juser.fz-juelich.de/record/907238/files/Surface%20FlawsControl%20-%20Schwaiger.pdf$$yOpenAccess
000907238 909CO $$ooai:juser.fz-juelich.de:907238$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000907238 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179598$$aForschungszentrum Jülich$$b3$$kFZJ
000907238 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000907238 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000907238 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000907238 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000907238 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907238 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMRS COMMUN : 2019$$d2021-02-02
000907238 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000907238 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000907238 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000907238 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-02-02$$wger
000907238 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000907238 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000907238 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000907238 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000907238 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000907238 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000907238 9801_ $$aFullTexts
000907238 980__ $$ajournal
000907238 980__ $$aVDB
000907238 980__ $$aI:(DE-Juel1)IEK-2-20101013
000907238 980__ $$aI:(DE-Juel1)NIC-20090406
000907238 980__ $$aUNRESTRICTED
000907238 981__ $$aI:(DE-Juel1)IMD-1-20101013