000907253 001__ 907253
000907253 005__ 20230522125350.0
000907253 0247_ $$2doi$$a10.1103/PhysRevE.105.045303
000907253 0247_ $$2ISSN$$a2470-0045
000907253 0247_ $$2ISSN$$a2470-0061
000907253 0247_ $$2ISSN$$a1063-651X
000907253 0247_ $$2ISSN$$a1095-3787
000907253 0247_ $$2ISSN$$a1538-4519
000907253 0247_ $$2ISSN$$a1539-3755
000907253 0247_ $$2ISSN$$a1550-2376
000907253 0247_ $$2ISSN$$a2470-0053
000907253 0247_ $$2Handle$$a2128/31038
000907253 0247_ $$2altmetric$$aaltmetric:116050694
000907253 0247_ $$2WOS$$aWOS:000786497300007
000907253 037__ $$aFZJ-2022-01922
000907253 082__ $$a530
000907253 1001_ $$0P:(DE-HGF)0$$aHerbst, Michael F.$$b0$$eCorresponding author
000907253 245__ $$aSurrogate models for quantum spin systems based on reduced-order modeling
000907253 260__ $$aWoodbury, NY$$bInst.$$c2022
000907253 3367_ $$2DRIVER$$aarticle
000907253 3367_ $$2DataCite$$aOutput Types/Journal article
000907253 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1650343699_11402
000907253 3367_ $$2BibTeX$$aARTICLE
000907253 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000907253 3367_ $$00$$2EndNote$$aJournal Article
000907253 520__ $$aWe present a methodology to investigate phase diagrams of quantum models based on the principle of the reduced basis method (RBM). The RBM is built from a few ground-state snapshots, i.e., lowest eigenvectors of the full system Hamiltonian computed at well-chosen points in the parameter space of interest. We put forward a greedy strategy to assemble such a small-dimensional basis, i.e., to select where to spend the numerical effort needed for the snapshots. Once the RBM is assembled, physical observables required for mapping out the phase diagram (e.g., structure factors) can be computed for any parameter value with a modest computational complexity, considerably lower than the one associated to the underlying Hilbert space dimension. We benchmark the method in two test cases, a chain of excited Rydberg atoms and a geometrically frustrated antiferromagnetic two-dimensional lattice model, and illustrate the accuracy of the approach. In particular, we find that the ground-state manifold can be approximated to sufficient accuracy with a moderate number of basis functions, which increases very mildly when the number of microscopic constituents grows—in stark contrast to the exponential growth of the Hilbert space needed to describe each of the few snapshots. A combination of the presented RBM approach with other numerical techniques circumventing even the latter big cost, e.g., tensor network methods, is a tantalizing outlook of this work.
000907253 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000907253 536__ $$0G:(EU-Grant)817482$$aPASQuanS - Programmable Atomic Large-Scale Quantum Simulation (817482)$$c817482$$fH2020-FETFLAG-2018-03$$x1
000907253 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000907253 7001_ $$0P:(DE-HGF)0$$aStamm, Benjamin$$b1
000907253 7001_ $$0P:(DE-HGF)0$$aWessel, Stefan$$b2
000907253 7001_ $$0P:(DE-Juel1)177780$$aRizzi, Matteo$$b3
000907253 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.105.045303$$gVol. 105, no. 4, p. 045303$$n4$$p045303$$tPhysical review / E$$v105$$x2470-0045$$y2022
000907253 8564_ $$uhttps://juser.fz-juelich.de/record/907253/files/PhysRevE.105.045303.pdf$$yOpenAccess
000907253 909CO $$ooai:juser.fz-juelich.de:907253$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000907253 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Mathematics, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany$$b0
000907253 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Mathematics, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany$$b1
000907253 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Theoretical Solid State Physics, RWTH Aachen University, Otto-Blumenthal-Straße 26, 52074 Aachen, Germany$$b2
000907253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177780$$aForschungszentrum Jülich$$b3$$kFZJ
000907253 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000907253 9141_ $$y2022
000907253 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000907253 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-05-04
000907253 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000907253 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000907253 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000907253 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-29
000907253 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-29
000907253 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-29
000907253 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-29
000907253 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-29
000907253 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-29
000907253 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-29
000907253 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2021$$d2022-11-29
000907253 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-29
000907253 920__ $$lyes
000907253 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
000907253 980__ $$ajournal
000907253 980__ $$aVDB
000907253 980__ $$aUNRESTRICTED
000907253 980__ $$aI:(DE-Juel1)PGI-8-20190808
000907253 9801_ $$aFullTexts